Leaf nodes from Preorder of a Binary Search Tree (Using Recursion)
Last Updated :
10 Oct, 2024
Given Preorder traversal of a Binary Search Tree. Then the task is to print leaf nodes of the Binary Search Tree from the given preorder.
Examples :
Input : preorder[] = {890, 325, 290, 530, 965};
Output : 290 530 965
Explanation: Below is the representation of BST using preorder array.
Approach:
To identify leaf nodes from a given preorder traversal of a binary search tree (BST), we employ a recursive approach that utilizes the properties of BSTs and preorder traversal. The algorithm maintains two variables, min and max, which define the valid range for each node based on its position in the tree. Starting with an index i set to zero, we traverse the preorder array. For each node, we check if its value lies within the specified range. if so, we consider it a valid node. We then increment the index and make recursive calls to check for potential left and right children, adjusting the min and max values accordingly. If both recursive calls return false, indicating that the node has no children, we store the node’s value as it is a leaf.
Below is the implementation of the above approach:
C++
// Recursive C++ program to find leaf
// nodes from given preorder traversal
#include<bits/stdc++.h>
using namespace std;
// Print the leaf node from
// the given preorder of BST.
bool isLeaf(vector<int> pre, int &i, int n, int min, int max) {
// If all elements is checked return
if (i >= n)
return false;
// Check if node is leaf or not
if (pre[i] > min && pre[i] < max) {
i++;
// Left and right node status if both are false
// then current node is leaf node
bool left = isLeaf(pre, i, n, min, pre[i-1]);
bool right = isLeaf(pre, i, n, pre[i-1], max);
// if no node found at left and right side print data
if (!left && !right)
cout << pre[i-1] << " ";
return true;
}
return false;
}
// Function to print all leafs
void printLeaves(vector<int> preorder, int n) {
int i = 0;
isLeaf(preorder, i, n, INT_MIN, INT_MAX);
}
int main() {
int n = 5;
// Array represantion of below BST
// 10
// / \
// 6 13
// / \
// 2 7
vector<int> preorder{10, 6, 2, 7, 13};
printLeaves(preorder, n);
return 0;
}
C
// Recursive C program to find leaf
// nodes from given preorder traversal
#include <stdio.h>
#include <limits.h>
// Print the leaf node from
// the given preorder of BST.
int isLeaf(int pre[], int *i, int n, int min, int max) {
// If all elements are checked return
if (*i >= n)
return 0;
// Check if node is leaf or not
if (pre[*i] > min && pre[*i] < max) {
(*i)++;
// Left and right node status, if both are false
// then current node is leaf node
int left = isLeaf(pre, i, n, min, pre[*i - 1]);
int right = isLeaf(pre, i, n, pre[*i - 1], max);
// if no node found at left and right side print data
if (!left && !right)
printf("%d ", pre[*i - 1]);
return 1;
}
return 0;
}
// Function to print all leaves
void printLeaves(int preorder[], int n) {
int i = 0;
isLeaf(preorder, &i, n, INT_MIN, INT_MAX);
}
int main() {
int n = 5;
// Array representation of below BST
// 10
// / \
// 6 13
// / \
// 2 7
int preorder[] = {10, 6, 2, 7, 13};
printLeaves(preorder, n);
return 0;
}
Java
// Recursive Java program to find leaf
// nodes from given preorder traversal
import java.util.*;
class GfG {
// Print the leaf node from
// the given preorder of BST.
static boolean isLeaf(List<Integer> pre, int[] i, int n, int min, int max) {
// If all elements is checked return
if (i[0] >= n)
return false;
// Check if node is leaf or not
if (pre.get(i[0]) > min && pre.get(i[0]) < max) {
i[0]++;
// Left and right node status if both are false
// then current node is leaf node
boolean left = isLeaf(pre, i, n, min, pre.get(i[0] - 1));
boolean right = isLeaf(pre, i, n, pre.get(i[0] - 1), max);
// if no node found at left and right side print data
if (!left && !right)
System.out.print(pre.get(i[0] - 1) + " ");
return true;
}
return false;
}
// Function to print all leaves
static void printLeaves(List<Integer> preorder, int n) {
int[] i = {0};
// Call utility function to print all leaves
isLeaf(preorder, i, n, Integer.MIN_VALUE, Integer.MAX_VALUE);
}
public static void main(String[] args) {
int n = 5;
// Array representation of below BST
// 10
// / \
// 6 13
// / \
// 2 7
List<Integer> preorder = Arrays.asList(10, 6, 2, 7, 13);
printLeaves(preorder, n);
}
}
Python
# Recursive Python program to find leaf
# nodes from given preorder traversal
# Print the leaf node from
# the given preorder of BST.
def is_leaf(pre, i, n, min_val, max_val):
# If all elements is checked return
if i[0] >= n:
return False
# Check if node is leaf or not
if min_val < pre[i[0]] < max_val:
i[0] += 1
# Left and right node status if both are false
# then current node is leaf node
left = is_leaf(pre, i, n, min_val, pre[i[0] - 1])
right = is_leaf(pre, i, n, pre[i[0] - 1], max_val)
# if no node found at left and right side print data
if not left and not right:
print(pre[i[0] - 1], end=" ")
return True
return False
# Function to print all leaves
def print_leaves(preorder, n):
i = [0]
# Call utility function to print all leaves
is_leaf(preorder, i, n, float('-inf'), float('inf'))
if __name__ == "__main__":
n = 5
# Array representation of below BST
# 10
# / \
# 6 13
# / \
# 2 7
preorder = [10, 6, 2, 7, 13]
print_leaves(preorder, n)
C#
// Recursive C# program to find leaf
// nodes from given preorder traversal
using System;
using System.Collections.Generic;
class GfG {
// Print the leaf node from
// the given preorder of BST.
static bool IsLeaf(List<int> pre, ref int i, int n,
int min, int max) {
// If all elements is checked return
if (i >= n)
return false;
// Check if node is leaf or not
if (pre[i] > min && pre[i] < max) {
i++;
// Left and right node status if both are false
// then current node is leaf node
bool left = IsLeaf(pre, ref i, n, min, pre[i - 1]);
bool right = IsLeaf(pre, ref i, n, pre[i - 1], max);
// if no node found at left and right side print data
if (!left && !right)
Console.Write(pre[i - 1] + " ");
return true;
}
return false;
}
// Function to print all leaves
static void PrintLeaves(List<int> preorder, int n) {
int i = 0;
IsLeaf(preorder, ref i, n, int.MinValue, int.MaxValue);
}
static void Main() {
int n = 5;
// Array representation of below BST
// 10
// / \
// 6 13
// / \
// 2 7
List<int> preorder = new List<int> { 10, 6, 2, 7, 13 };
PrintLeaves(preorder, n);
}
}
JavaScript
// Recursive JavaScript program to find leaf
// nodes from given preorder traversal
// Print the leaf node from
// the given preorder of BST.
function isLeaf(pre, i, n, min, max) {
// If all elements is checked return
if (i[0] >= n)
return false;
// Check if node is leaf or not
if (pre[i[0]] > min && pre[i[0]] < max) {
i[0]++;
// Left and right node status if both are false
// then current node is leaf node
let left = isLeaf(pre, i, n, min, pre[i[0] - 1]);
let right = isLeaf(pre, i, n, pre[i[0] - 1], max);
// if no node found at left and right side print data
if (!left && !right)
console.log(pre[i[0] - 1]);
return true;
}
return false;
}
// Function to print all leaves
function printLeaves(preorder, n) {
let i = [0];
isLeaf(preorder, i, n, Number.MIN_SAFE_INTEGER,
Number.MAX_SAFE_INTEGER);
}
let n = 5;
// Array representation of below BST
// 10
// / \
// 6 13
// / \
// 2 7
let preorder = [10, 6, 2, 7, 13];
printLeaves(preorder, n);
Time Complexity: O(n), As we are traversing the BST only once.
Auxiliary Space: O(h), here h is the height of the BST and the extra space is used in the recursion call stack.
Related article:
Similar Reads
Binary Search Tree A Binary Search Tree (BST) is a type of binary tree data structure in which each node contains a unique key and satisfies a specific ordering property:All nodes in the left subtree of a node contain values strictly less than the nodeâs value. All nodes in the right subtree of a node contain values s
4 min read
Introduction to Binary Search Tree Binary Search Tree is a data structure used in computer science for organizing and storing data in a sorted manner. Binary search tree follows all properties of binary tree and for every nodes, its left subtree contains values less than the node and the right subtree contains values greater than the
3 min read
Applications of BST Binary Search Tree (BST) is a data structure that is commonly used to implement efficient searching, insertion, and deletion operations along with maintaining sorted sequence of data. Please remember the following properties of BSTs before moving forward.The left subtree of a node contains only node
3 min read
Applications, Advantages and Disadvantages of Binary Search Tree A Binary Search Tree (BST) is a data structure used to storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right child containing values greater than the p
2 min read
Insertion in Binary Search Tree (BST) Given a BST, the task is to insert a new node in this BST.Example: How to Insert a value in a Binary Search Tree:A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start searching for a key from the root until we hit a leaf node. Once a leaf node is fo
15 min read
Searching in Binary Search Tree (BST) Given a BST, the task is to search a node in this BST. For searching a value in BST, consider it as a sorted array. Now we can easily perform search operation in BST using Binary Search Algorithm. Input: Root of the below BST Output: TrueExplanation: 8 is present in the BST as right child of rootInp
7 min read
Deletion in Binary Search Tree (BST) Given a BST, the task is to delete a node in this BST, which can be broken down into 3 scenarios:Case 1. Delete a Leaf Node in BST Case 2. Delete a Node with Single Child in BSTDeleting a single child node is also simple in BST. Copy the child to the node and delete the node. Case 3. Delete a Node w
10 min read
Binary Search Tree (BST) Traversals â Inorder, Preorder, Post Order Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary Search Tree. Input: A Binary Search TreeOutput: Inorder Traversal: 10 20 30 100 150 200 300Preorder Traversal: 100 20 10 30 200 150 300Postorder Traversal: 10 30 20 150 300 200 1
10 min read
Balance a Binary Search Tree Given a BST (Binary Search Tree) that may be unbalanced, the task is to convert it into a balanced BST that has the minimum possible height.Examples: Input: Output: Explanation: The above unbalanced BST is converted to balanced with the minimum possible height.Input: Output: Explanation: The above u
10 min read
Self-Balancing Binary Search Trees Self-Balancing Binary Search Trees are height-balanced binary search trees that automatically keep the height as small as possible when insertion and deletion operations are performed on the tree. The height is typically maintained in order of logN so that all operations take O(logN) time on average
4 min read