Largest subset of Array having sum at least 0
Last Updated :
02 Feb, 2023
Given an array arr[] that contains N integers, the task is to find the largest subset having sum at least 0.
Examples:
Input: arr[] = {5, -7, 0, -5, -3, -1}
Output: 4
Explanation: The largest subset that can be selected is {5, 0, -3, -1}. It has size 4
Input: arr[] = {1, -4, -2, -3}
Output: 1
Naive Approach: The basic idea to solve the problem is by using Recursion based on the following idea:
At every index, there are two choices, either select that element or not. If sum is becoming negative then don't pick it otherwise pick it. And from every recursion return the size of the largest possible subset between the two choices.
Follow the steps mentioned below:
- Use a recursive function and for each index there are two choices either select that element or not.
- Avoid selecting that element, whose value make the sum negative.
- Return the count of maximum picked elements out of both choices.
- The maximum among all of these is the required subset size.
Below is the implementation of the above approach:
C++
// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
// Function to return maximum count
int pick_max_elements(int pos, int sum,
int n, int arr[])
{
// Return if the end of the array
// is reached
if (pos == n)
return 0;
int taken = INT_MIN;
// If we select element at index pos
if (sum + arr[pos] >= 0)
taken = 1
+ pick_max_elements(pos + 1,
sum + arr[pos],
n, arr);
int not_taken
= pick_max_elements(pos + 1,
sum, n, arr);
// Return the maximize steps taken
return max(taken, not_taken);
}
// Driver code
int main()
{
int arr[] = { 1, -4, -2, -3 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function to pick maximum number
// of elements
cout << pick_max_elements(0, 0, N, arr);
return 0;
}
Java
// Java code to implement the approach
import java.util.*;
class GFG
{
// Function to return maximum count
public static int pick_max_elements(int pos, int sum,
int n, int arr[])
{
// Return if the end of the array
// is reached
if (pos == n)
return 0;
int taken = Integer.MIN_VALUE;
// If we select element at index pos
if (sum + arr[pos] >= 0)
taken = 1
+ pick_max_elements(
pos + 1, sum + arr[pos], n, arr);
int not_taken
= pick_max_elements(pos + 1, sum, n, arr);
// Return the maximize steps taken
return Math.max(taken, not_taken);
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 1, -4, -2, -3 };
int N = arr.length;
// Function to pick maximum number
// of elements
System.out.print(pick_max_elements(0, 0, N, arr));
}
}
// This code is contributed by Taranpreet
Python
# Python code to implement the approach
INT_MIN = -(1e9 + 7)
# Function to return maximum count
def pick_max_elements(pos, sum, n, arr):
# Return if the end of the array
# is reached
if (pos == n):
return 0
taken = INT_MIN
# If we select element at index pos
if (sum + arr[pos] >= 0):
taken = 1 + pick_max_elements(pos + 1, sum + arr[pos], n, arr)
not_taken = pick_max_elements(pos + 1, sum, n, arr)
# Return the maximize steps taken
return max(taken, not_taken)
# Driver code
arr = [1, -4, -2, -3]
N = len(arr)
# Function to pick maximum number
# of elements
print(pick_max_elements(0, 0, N, arr))
# This code is contributed by Samim Hossain Mondal.
C#
// C# code to implement the approach
using System;
class GFG {
// Function to return maximum count
public static int pick_max_elements(int pos, int sum,
int n, int[] arr)
{
// Return if the end of the array
// is reached
if (pos == n)
return 0;
int taken = Int32.MinValue;
// If we select element at index pos
if (sum + arr[pos] >= 0)
taken = 1
+ pick_max_elements(
pos + 1, sum + arr[pos], n, arr);
int not_taken
= pick_max_elements(pos + 1, sum, n, arr);
// Return the maximize steps taken
return Math.Max(taken, not_taken);
}
// Driver code
public static void Main(string[] args)
{
int[] arr = { 1, -4, -2, -3 };
int N = arr.Length;
// Function to pick maximum number
// of elements
Console.Write(pick_max_elements(0, 0, N, arr));
}
}
// This code is contributed by ukasp.
JavaScript
<script>
// JavaScript code for the above approach
// Function to return maximum count
function pick_max_elements(pos, sum,
n, arr) {
// Return if the end of the array
// is reached
if (pos == n)
return 0;
let taken = Number.MIN_VALUE;
// If we select element at index pos
if (sum + arr[pos] >= 0)
taken = 1
+ pick_max_elements(pos + 1,
sum + arr[pos],
n, arr);
let not_taken
= pick_max_elements(pos + 1,
sum, n, arr);
// Return the maximize steps taken
return Math.max(taken, not_taken);
}
// Driver code
let arr = [1, -4, -2, -3];
let N = arr.length;
// Function to pick maximum number
// of elements
document.write(pick_max_elements(0, 0, N, arr));
// This code is contributed by Potta Lokesh
</script>
Time Complexity: O( 2N)
Auxiliary Space: O( N )
Efficient Approach: The efficient approach is using multiset based on the following idea:
Traverse from start of array and if at any index the sum till now becomes negative then erase the minimum element till current index from the subset. This will increase the subset sum.
To efficiently find the minimum multiset is used.
Follow the illustration given below for a better understanding.
Illustration:
Consider the array arr[] = {1, -4, -2, -3}
multiset <int> s,
-> Insert arr[0] in s. s = {1}. sum = sum + arr[0] = 1
-> Insert arr[1] in s. s = { -4, 1 }. sum = sum + arr[1] = -3
-> Remove the smallest element (i.e. -4). sum = -3 - (-4) = 1.
-> Insert arr[2] in s. s = { -2, 1 }. sum = sum + arr[2] = -1
-> Remove the smallest element (i.e. -2). sum = -1 - (-2) = 1.
-> Insert arr[3] in s. s = { -3, 1 }. sum = sum + arr[1] = -2
-> Remove the smallest element (i.e. is -3). sum = -2 - (-3) = 1.
Total 1 element in the subset
Follow the below steps to solve this problem:
- Iterate from i = 0 to N
- Increment the count
- Add the current element to the subset sum.
- Insert arr[i] into the set.
- If sum becomes negative then subtract the smallest value from the set and also remove the smallest element from the set
- Decrement the count
- Return the final count.
Below is the implementation of the above approach:
C++
// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
// Function to return max count
int pick_max_elements(int arr[], int n)
{
int cnt = 0, sum = 0;
// To store elements in sorted order
multiset<int> s;
for (int i = 0; i < n; i++) {
sum += arr[i];
// An element added,
// so increase the cnt
cnt++;
s.insert(arr[i]);
if (sum < 0) {
sum = sum - *s.begin();
// To remove the
// smallest element
s.erase(s.begin());
// Removed an element,
// so decrease the cnt
cnt--;
}
}
return cnt;
}
// Driver code
int main()
{
int arr[] = { 1, -4, -2, -3 };
// Size of array
int N = sizeof(arr) / sizeof(arr[0]);
// Function to pick
// maximum number of elements
cout << pick_max_elements(arr, N);
return 0;
}
Java
// JAVA code to implement the above approach
import java.util.*;
class GFG {
// Function to return max count
static int pick_max_elements(int arr[], int n)
{
int cnt = 0, sum = 0;
// To store elements in sorted order
Vector<Integer> s = new Vector<>();
for (int i = 0; i < n; i++) {
sum += arr[i];
// An element added,
// so increase the cnt
cnt++;
s.add(arr[i]);
if (sum < 0) {
sum = sum - s.get(0);
// To remove the
// smallest element
s.remove(0);
// Removed an element,
// so decrease the cnt
cnt--;
}
}
return cnt;
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 1, -4, -2, -3 };
int N = arr.length;
// Function to pick maximum number
// of elements
System.out.print(pick_max_elements(arr, N));
}
}
// This code is contributed by sanjoy_62.
Python3
# Python3 code to implement the approach
# using bisect.insort() to
# store elements in sorted form
import bisect
# Function to return max count
def pick_max_elements(arr, n) :
cnt = 0
sum = 0
# To store elements in sorted order
s = []
for i in range(0,n) :
sum += arr[i]
# An element added,
# so increase the cnt
cnt += 1
bisect.insort(s, arr[i])
if sum < 0 :
sum = sum - s[0]
# To remove the
# smallest element
s.pop(0)
# Removed an element,
# so decrease the cnt
cnt -= 1
return cnt
# Driver code
if __name__ == "__main__":
arr = [ 1, -4, -2, -3 ]
N = len(arr)
# Function to pick maximum number
# of elements
print(pick_max_elements(arr, N))
# This code is contributed by Pushpesh Raj
C#
// Include namespace system
using System;
using System.Collections.Generic;
public class GFG
{
// Function to return max count
public static int pick_max_elements(int[] arr, int n)
{
var cnt = 0;
var sum = 0;
// To store elements in sorted order
var s = new List<int>();
for (int i = 0; i < n; i++)
{
sum += arr[i];
// An element added,
// so increase the cnt
cnt++;
s.Add(arr[i]);
if (sum < 0)
{
sum = sum - s[0];
// To remove the
// smallest element
s.RemoveAt(0);
// Removed an element,
// so decrease the cnt
cnt--;
}
}
return cnt;
}
// Driver code
public static void Main(String[] args)
{
int[] arr = {1, -4, -2, -3};
var N = arr.Length;
// Function to pick maximum number
// of elements
Console.Write(GFG.pick_max_elements(arr, N));
}
}
// This code is contributed by dhanshriborse561
JavaScript
// Javascript code to implement the approach
// Function to return max count
const pickMaxElements = (arr) => {
let cnt = 0, sum = 0;
// To store elements in sorted order
const s = new Set();
for (let i = 0; i < arr.length; i++) {
sum += arr[i];
// An element added,
// so increase the cnt
cnt++;
s.add(arr[i]);
if (sum < 0) {
sum = sum - Math.min(...s);
// To remove the
// smallest element
s.delete(Math.min(...s));
// Removed an element,
// so decrease the cnt
cnt--;
}
}
return cnt;
}
// Driver code
const arr = [1, -4, -2, -3];
// Function to pick
// maximum number of elements
console.log(pickMaxElements(arr));
// This code is contributed by Utkarsh
Time complexity: O( N * log N )
Auxiliary Space: O(N )
Similar Reads
Largest Subset with sum less than each Array element Given an array arr[] containing N elements, the task is to find the size of the largest subset for each array element arr[i] such that the sum of the subset is less than that element. Examples: Input: arr[] = { 5, 2, 1, 1, 1, 6, 8}Output: 3 1 0 0 0 4 4 Explanation: For i = 0 -> subset = {1, 1, 1}
12 min read
Largest subarray having sum greater than k Given an array of integers and a value k, the task is to find the length of the largest subarray having a sum greater than k.Examples: Input: arr[] = [-2, 1, 6, -3], k = 5Output: 2Explanation: The largest subarray with a sum greater than 5 is {1, 6}.Input: arr[] = [2, -3, 3, 2, 0, -1], k = 3Output:
15 min read
Subset sum problem where Array sum is at most N Given an array arr[] of size N such that the sum of all the array elements does not exceed N, and array queries[] containing Q queries. For each query, the task is to find if there is a subset of the array whose sum is the same as queries[i]. Examples: Input: arr[] = {1, 0, 0, 0, 0, 2, 3}, queries[]
10 min read
Longest subsequence having maximum sum Given an array arr[] of size N, the task is to find the longest non-empty subsequence from the given array whose sum is maximum. Examples: Input: arr[] = { 1, 2, -4, -2, 3, 0 } Output: 1 2 3 0 Explanation: Sum of elements of the subsequence {1, 2, 3, 0} is 6 which is the maximum possible sum. Theref
8 min read
Longest subarray having sum of elements atmost K Given an array arr[] of size N and an integer K, the task is to find the length of the largest subarray having the sum of its elements at most K, where K > 0.Examples: Input: arr[] = {1, 2, 1, 0, 1, 1, 0}, k = 4Output: 5Explanation: {1, 2, 1} => sum = 4, length = 3 {1, 2, 1, 0}, {2, 1, 0, 1} =
12 min read