Largest Rectangular Area in a Histogram
Last Updated :
23 Jul, 2025
Given a histogram represented by an array arr[], where each element of the array denotes the height of the bars in the histogram. All bars have the same width of 1 unit.
Task is to find the largest rectangular area possible in a given histogram where the largest rectangle can be made of a number of contiguous bars whose heights are given in an array.
Example:
Input: arr[] = [60, 20, 50, 40, 10, 50, 60]
Output: 100
Explanation: We get the maximum are by picking bars highlighted above in green (50, and 60). The area is computed (smallest height) * (no. of the picked bars) = 50 * 2 = 100.
Input: arr[] = [3, 5, 1, 7, 5, 9]
Output: 15
Explanation: We get the maximum are by picking bars 7, 5 and 9. The area is computed (smallest height) * (no. of the picked bars) = 5 * 3 = 15.
[Naive Approach] By Finding Max Area of Rectangles all Heights - O(n^2) Time and O(1) Space
The idea is to consider each bar as the minimum height and find the maximum area. We traverse toward left of it and add its height until we see a smaller element. We do the same thing for right side of it.
So the area with current bar as minimum is going to be height of current bar multiplied by total width traversed on both left and right including the current bar. The area is the bar’s height multiplied by the total traversed width. Finally, we return the maximum of all such areas.
C++
// C++ program to find the largest rectangular area possible
// in a given histogram
#include <bits/stdc++.h>
using namespace std;
// Function to calculate the maximum rectangular
// area in the Histogram
int getMaxArea(vector<int> &arr){
int res = 0, n = arr.size();
// Consider every bar one by one
for(int i = 0; i < n; i++){
int curr = arr[i];
// Traverse left while we have a greater height bar
for(int j = i-1; j>=0 && arr[j] >= arr[i]; j--)
curr += arr[i];
// Traverse right while we have a greater height bar
for(int j = i+1; j<n && arr[j] >= arr[i]; j++)
curr += arr[i];
res = max(res, curr);
}
return res;
}
int main() {
vector<int> arr = {60, 20, 50, 40, 10, 50, 60};
cout << getMaxArea(arr);
return 0;
}
C
// Cprogram to find the largest rectangular area possible
// in a given histogram
#include <stdio.h>
// Function to calculate the maximum rectangular
// area in the Histogram
int getMaxArea(int arr[], int n) {
int res = 0;
// Consider every bar one by one
for (int i = 0; i < n; i++) {
int curr = arr[i];
// Traverse left while we have a greater height bar
for (int j = i - 1; j >= 0 && arr[j] >= arr[i]; j--) {
curr += arr[i];
}
// Traverse right while we have a greater height bar
for (int j = i + 1; j < n && arr[j] >= arr[i]; j++) {
curr += arr[i];
}
if (curr > res) {
res = curr;
}
}
return res;
}
int main() {
int arr[] = {60, 20, 50, 40, 10, 50, 60};
int n = sizeof(arr) / sizeof(arr[0]);
printf("%d\n", getMaxArea(arr, n));
return 0;
}
Java
// Java program to find the largest rectangular area possible
// in a given histogram
import java.util.*;
class GfG {
// Function to calculate the maximum rectangular
// area in the Histogram
static int getMaxArea(int[] arr) {
int res = 0, n = arr.length;
for (int i = 0; i < n; i++) {
int curr = arr[i];
// Traverse left while we have a greater height bar
for (int j = i - 1; j >= 0 && arr[j] >= arr[i]; j--)
curr += arr[i];
// Traverse right while we have a greater height bar
for (int j = i + 1; j < n && arr[j] >= arr[i]; j++)
curr += arr[i];
res = Math.max(res, curr);
}
return res;
}
public static void main(String[] args) {
int[] arr = {60, 20, 50, 40, 10, 50, 60};
System.out.println(getMaxArea(arr));
}
}
Python
# Python program to find the largest rectangular area possible
# in a given histogram
# Function to calculate the maximum rectangular
# area in the Histogram
def getMaxArea(arr):
res = 0
n = len(arr)
for i in range(n):
curr = arr[i]
# Traverse left while we have a greater height bar
j = i - 1
while j >= 0 and arr[j] >= arr[i]:
curr += arr[i]
j -= 1
# Traverse right while we have a greater height bar
j = i + 1
while j < n and arr[j] >= arr[i]:
curr += arr[i]
j += 1
res = max(res, curr)
return res
if __name__ == "__main__":
arr = [60, 20, 50, 40, 10, 50, 60]
print(getMaxArea(arr))
C#
// C# program to find the largest rectangular area possible
// in a given histogram
using System;
class GfG {
// Function to calculate the maximum rectangular
// area in the Histogram
static int getMaxArea(int[] arr) {
int n = arr.Length;
int res = 0;
// Consider every bar one by one
for (int i = 0; i < n; i++) {
int curr = arr[i];
// Traverse left while we have a greater height bar
int j = i - 1;
while (j >= 0 && arr[j] >= arr[i]) {
curr += arr[i];
j--;
}
// Traverse right while we have a greater height bar
j = i + 1;
while (j < n && arr[j] >= arr[i]) {
curr += arr[i];
j++;
}
res = Math.Max(res, curr);
}
return res;
}
static void Main(string[] args) {
int[] arr = {60, 20, 50, 40, 10, 50, 60};
Console.WriteLine(getMaxArea(arr));
}
}
JavaScript
// JavaScript program to find the largest rectangular area possible
// in a given histogram
// Function to calculate the maximum rectangular
// area in the Histogram
function getMaxArea(arr) {
let n = arr.length;
let res = 0;
// Consider every bar one by one
for (let i = 0; i < n; i++) {
let curr = arr[i];
// Traverse left while we have a greater height bar
let j = i - 1;
while (j >= 0 && arr[j] >= arr[i]) {
curr += arr[i];
j--;
}
// Traverse right while we have a greater height bar
j = i + 1;
while (j < n && arr[j] >= arr[i]) {
curr += arr[i];
j++;
}
res = Math.max(res, curr);
}
return res;
}
// Driver code
let arr = [ 60, 20, 50, 40, 10, 50, 60 ];
console.log(getMaxArea(arr));
[Expected Approach] Precomputing (Using Two Stack) - O(n) Time and O(n) Space
The idea is based on the naive approach. Instead of linearly finding previous smaller and next smaller for every element, we find previous smaller and next smaller for the whole array in linear time.
- Build an array prevS[] in O(n) time using stack that holds index of previous smaller element for every item.
- Build another array nextS[] in O(n) time using stack that holds index of next smaller element for every item.
- Now do following for every element arr[i]. Consider arr[i] find width of the largest histogram with arr[i] being the smallest height. width = nextS[i] - prevS[i] - 1. Now find the area as arr[i] * width.
- Return the maximum of all values found in step 3.
C++
// C++ program to find the largest rectangular area possible
// in a given histogram
#include <bits/stdc++.h>
using namespace std;
// Function to find next smaller for every element
vector<int> nextSmaller(vector<int>& arr) {
int n = arr.size();
// Initialize with n for the cases when next smaller
// does not exist
vector<int> nextS(n, n);
stack<int> st;
// Traverse all array elements from left to right
for (int i = 0; i < n; ++i) {
while (!st.empty() && arr[i] < arr[st.top()]) {
// Setting the index of the next smaller element
// for the top of the stack
nextS[st.top()] = i;
st.pop();
}
st.push(i);
}
return nextS;
}
// Function to find previous smaller for every element
vector<int> prevSmaller(vector<int>& arr) {
int n = arr.size();
// Initialize with -1 for the cases when prev smaller
// does not exist
vector<int> prevS(n, -1);
stack<int> st;
// Traverse all array elements from left to right
for (int i = 0; i < n; ++i) {
while (!st.empty() && arr[i] < arr[st.top()]) {
// Setting the index of the previous smaller element
// for the top of the stack
st.pop();
}
if (!st.empty()) {
prevS[i] = st.top();
}
st.push(i);
}
return prevS;
}
// Function to calculate the maximum rectangular
// area in the Histogram
int getMaxArea(vector<int>& arr) {
vector<int> prevS = prevSmaller(arr);
vector<int> nextS = nextSmaller(arr);
int maxArea = 0;
// Calculate the area for each Histogram bar
for (int i = 0; i < arr.size(); ++i) {
int width = nextS[i] - prevS[i] - 1;
int area = arr[i] * width;
maxArea = max(maxArea, area);
}
return maxArea;
}
int main() {
vector<int> arr = {60, 20, 50, 40, 10, 50, 60};
cout << getMaxArea(arr) << endl;
return 0;
}
C
// C program to find the largest rectangular area possible
// in a given histogram
#include <stdio.h>
#include <stdlib.h>
// Stack structure
struct Stack {
int top;
int capacity;
int* items;
};
// Function to create an empty stack with dynamic memory allocation
struct Stack* createStack(int capacity) {
struct Stack* stack =
(struct Stack*)malloc(sizeof(struct Stack));
stack->capacity = capacity;
stack->top = -1;
stack->items = (int*)malloc(stack->capacity * sizeof(int));
return stack;
}
// Function to check if the stack is empty
int isEmpty(struct Stack* stack) {
return stack->top == -1;
}
// Function to push an element onto the stack
void push(struct Stack* stack, int value) {
if (stack->top == stack->capacity - 1) {
printf("Stack overflow\n");
return;
}
stack->items[++(stack->top)] = value;
}
// Function to pop an element from the stack
int pop(struct Stack* stack) {
if (isEmpty(stack)) {
printf("Stack underflow\n");
return -1;
}
return stack->items[(stack->top)--];
}
// Function to get the top element of the stack
int peek(struct Stack* stack) {
if (!isEmpty(stack)) {
return stack->items[stack->top];
}
return -1;
}
// Function to find the next smaller element for every element
void nextSmaller(int arr[], int n, int nextS[]) {
struct Stack* stack = createStack(n);
// Initialize with n for the cases
// when next smaller does not exist
for (int i = 0; i < n; i++) {
nextS[i] = n;
}
// Traverse all array elements from left to right
for (int i = 0; i < n; i++) {
while (!isEmpty(stack) && arr[i] < arr[peek(stack)]) {
nextS[peek(stack)] = i;
pop(stack);
}
push(stack, i);
}
}
// Function to find the previous smaller element for every element
void prevSmaller(int arr[], int n, int prevS[]) {
struct Stack* stack = createStack(n);
// Initialize with -1 for the cases when prev smaller does not exist
for (int i = 0; i < n; i++) {
prevS[i] = -1;
}
// Traverse all array elements from left to right
for (int i = 0; i < n; i++) {
while (!isEmpty(stack) && arr[i] < arr[peek(stack)]) {
pop(stack);
}
if (!isEmpty(stack)) {
prevS[i] = peek(stack);
}
push(stack, i);
}
}
// Function to calculate the maximum rectangular
// area in the Histogram
int getMaxArea(int arr[], int n) {
int* prevS = (int*)malloc(n * sizeof(int));
int* nextS = (int*)malloc(n * sizeof(int));
int maxArea = 0;
// Find previous and next smaller elements
prevSmaller(arr, n, prevS);
nextSmaller(arr, n, nextS);
// Calculate the area for each arrogram bar
for (int i = 0; i < n; i++) {
int width = nextS[i] - prevS[i] - 1;
int area = arr[i] * width;
if (area > maxArea) {
maxArea = area;
}
}
return maxArea;
}
// Driver code
int main() {
int arr[] = {60, 20, 50, 40, 10, 50, 60};
int n = sizeof(arr) / sizeof(arr[0]);
printf("%d\n", getMaxArea(arr, n));
return 0;
}
Java
// Java program to find the largest rectangular area possible
// in a given histogram
import java.util.Stack;
class GfG {
// Function to find next smaller for every element
static int[] nextSmaller(int[] arr) {
int n = arr.length;
// Initialize with n for the cases when next smaller
// does not exist
int[] nextS = new int[n];
for (int i = 0; i < n; i++) {
nextS[i] = n;
}
Stack<Integer> st = new Stack<>();
// Traverse all array elements from left to right
for (int i = 0; i < n; i++) {
while (!st.isEmpty() && arr[i] < arr[st.peek()]) {
// Setting the index of the next smaller element
// for the top of the stack
nextS[st.pop()] = i;
}
st.push(i);
}
return nextS;
}
// Function to find previous smaller for every element
static int[] prevSmaller(int[] arr) {
int n = arr.length;
// Initialize with -1 for the cases when prev smaller
// does not exist
int[] prevS = new int[n];
for (int i = 0; i < n; i++) {
prevS[i] = -1;
}
Stack<Integer> st = new Stack<>();
// Traverse all array elements from left to right
for (int i = 0; i < n; i++) {
while (!st.isEmpty() && arr[i] < arr[st.peek()]) {
st.pop();
}
if (!st.isEmpty()) {
prevS[i] = st.peek();
}
st.push(i);
}
return prevS;
}
// Function to calculate the maximum rectangular
// area in the histogram
static int getMaxArea(int[] arr) {
int[] prevS = prevSmaller(arr);
int[] nextS = nextSmaller(arr);
int maxArea = 0;
// Calculate the area for each arrogram bar
for (int i = 0; i < arr.length; i++) {
int width = nextS[i] - prevS[i] - 1;
int area = arr[i] * width;
maxArea = Math.max(maxArea, area);
}
return maxArea;
}
public static void main(String[] args) {
int[] arr = {60, 20, 50, 40, 10, 50, 60};
System.out.println(getMaxArea(arr));
}
}
Python
# Python program to find the largest rectangular area possible
# in a given histogram
# Function to find next smaller for every element
def nextSmaller(arr):
n = len(arr)
# Initialize with n for the cases when next smaller
# does not exist
nextS = [n] * n
st = []
# Traverse all array elements from left to right
for i in range(n):
while st and arr[i] < arr[st[-1]]:
# Setting the index of the next smaller element
# for the top of the stack
nextS[st.pop()] = i
st.append(i)
return nextS
# Function to find previous smaller for every element
def prevSmaller(arr):
n = len(arr)
# Initialize with -1 for the cases when prev smaller
# does not exist
prevS = [-1] * n
st = []
# Traverse all array elements from left to right
for i in range(n):
while st and arr[i] < arr[st[-1]]:
st.pop()
if st:
prevS[i] = st[-1]
st.append(i)
return prevS
# Function to calculate the maximum rectangular
# area in the Histogram
def getMaxArea(arr):
prevS = prevSmaller(arr)
nextS = nextSmaller(arr)
maxArea = 0
# Calculate the area for each arrogram bar
for i in range(len(arr)):
width = nextS[i] - prevS[i] - 1
area = arr[i] * width
maxArea = max(maxArea, area)
return maxArea
if __name__ == "__main__":
arr = [60, 20, 50, 40, 10, 50, 60]
print(getMaxArea(arr))
C#
// C# program to find the largest rectangular area possible
// in a given histogram
using System;
using System.Collections.Generic;
class GfG {
// Function to find next smaller for every element
static int[] nextSmaller(int[] arr) {
int n = arr.Length;
// Initialize with n for the cases when next smaller
// does not exist
int[] nextS = new int[n];
for (int i = 0; i < n; i++) {
nextS[i] = n;
}
Stack<int> st = new Stack<int>();
// Traverse all array elements from left to right
for (int i = 0; i < n; i++) {
while (st.Count > 0 && arr[i] < arr[st.Peek()]) {
// Setting the index of the next smaller element
// for the top of the stack
nextS[st.Pop()] = i;
}
st.Push(i);
}
return nextS;
}
// Function to find previous smaller for every element
static int[] prevSmaller(int[] arr) {
int n = arr.Length;
// Initialize with -1 for the cases when prev smaller
// does not exist
int[] prevS = new int[n];
for (int i = 0; i < n; i++) {
prevS[i] = -1;
}
Stack<int> st = new Stack<int>();
// Traverse all array elements from left to right
for (int i = 0; i < n; i++) {
while (st.Count > 0 && arr[i] < arr[st.Peek()]) {
st.Pop();
}
if (st.Count > 0) {
prevS[i] = st.Peek();
}
st.Push(i);
}
return prevS;
}
// Function to calculate the maximum rectangular
// area in the Histogram
static int getMaxArea(int[] arr) {
int[] prevS = prevSmaller(arr);
int[] nextS = nextSmaller(arr);
int maxArea = 0;
// Calculate the area for each arrogram bar
for (int i = 0; i < arr.Length; i++) {
int width = nextS[i] - prevS[i] - 1;
int area = arr[i] * width;
maxArea = Math.Max(maxArea, area);
}
return maxArea;
}
static void Main() {
int[] arr = {60, 20, 50, 40, 10, 50, 60};
Console.WriteLine(getMaxArea(arr));
}
}
JavaScript
// JavaScript program to find the largest rectangular area possible
// in a given histogram
// Function to find next smaller for every element
function nextSmaller(arr){
const n = arr.length;
// Initialize with n for the cases when next smaller
// does not exist
const nextS = new Array(n).fill(n);
const stack = [];
// Traverse all array elements from left to right
for (let i = 0; i < n; i++) {
while (stack.length
&& arr[i] < arr[stack[stack.length - 1]]) {
// Setting the index of the next smaller element
// for the top of the stack
nextS[stack.pop()] = i;
}
stack.push(i);
}
return nextS;
}
// Function to find previous smaller for every element
function prevSmaller(arr) {
const n = arr.length;
// Initialize with -1 for the cases when prev smaller
// does not exist
const prevS = new Array(n).fill(-1);
const stack = [];
// Traverse all array elements from left to right
for (let i = 0; i < n; i++) {
while (stack.length
&& arr[i] < arr[stack[stack.length - 1]]) {
stack.pop();
}
if (stack.length) {
prevS[i] = stack[stack.length - 1];
}
stack.push(i);
}
return prevS;
}
// Function to calculate the maximum rectangular
// area in the Histogram
function getMaxArea(arr) {
const prevS = prevSmaller(arr);
const nextS = nextSmaller(arr);
let maxArea = 0;
// Calculate the area for each arrogram bar
for (let i = 0; i < arr.length; i++) {
const width = nextS[i] - prevS[i] - 1;
const area = arr[i] * width;
maxArea = Math.max(maxArea, area);
}
return maxArea;
}
// Driver code
const arr = [60, 20, 50, 40, 10, 50, 60];
console.log(getMaxArea(arr));
[Further Optimized] Using Single Stack - O(n) Time and O(n) Space
This approach is mainly an optimization over the previous approach.
When we compute next smaller element, we pop an item from the stack and mark current item as next smaller of it. One important observation here is the item below every item in stack is the previous smaller element. So we do not need to explicitly compute previous smaller.
Below are the detailed steps of implementation.
- Create an empty stack.
- Start from the first bar, and do the following for every bar arr[i] where 'i' varies from 0 to n-1
- If the stack is empty or arr[i] is higher than the bar at top of the stack, then push 'i' to stack.
- If this bar is smaller than the top of the stack, then keep removing the top of the stack while the top of the stack is greater.
- Let the removed bar be arr[tp]. Calculate the area of the rectangle with arr[tp] as the smallest bar.
- For arr[tp], the 'left index' is previous (previous to tp) item in stack and 'right index' is 'i' (current index).
- If the stack is not empty, then one by one remove all bars from the stack and do step (2.2 and 2.3) for every removed bar
C++
// C++ program to find the largest rectangular area possible
// in a given histogram
#include <bits/stdc++.h>
using namespace std;
// Function to calculate the maximum rectangular area
int getMaxArea(vector<int>& arr) {
int n = arr.size();
stack<int> s;
int res = 0;
int tp, curr;
for (int i = 0; i < n; i++) {
while (!s.empty() && arr[s.top()] >= arr[i]) {
// The popped item is to be considered as the
// smallest element of the Histogram
tp = s.top();
s.pop();
// For the popped item previous smaller element is
// just below it in the stack (or current stack top)
// and next smaller element is i
int width = s.empty() ? i : i - s.top() - 1;
res = max(res, arr[tp] * width);
}
s.push(i);
}
// For the remaining items in the stack, next smaller does
// not exist. Previous smaller is the item just below in
// stack.
while (!s.empty()) {
tp = s.top(); s.pop();
curr = arr[tp] * (s.empty() ? n : n - s.top() - 1);
res = max(res, curr);
}
return res;
}
int main() {
vector<int> arr = {60, 20, 50, 40, 10, 50, 60};
cout << getMaxArea(arr);
return 0;
}
C
// C program to find the largest rectangular area possible
// in a given histogram
#include <stdio.h>
#include <stdlib.h>
// Stack structure
struct Stack {
int top;
int capacity;
int* array;
};
// Function to create a stack
struct Stack* createStack(int capacity) {
struct Stack* stack = (struct Stack*)
malloc(sizeof(struct Stack));
stack->capacity = capacity;
stack->top = -1;
stack->array = (int*)malloc(stack->capacity * sizeof(int));
return stack;
}
int isEmpty(struct Stack* stack) {
return stack->top == -1;
}
void push(struct Stack* stack, int item) {
stack->array[++stack->top] = item;
}
int pop(struct Stack* stack) {
return stack->array[stack->top--];
}
int peek(struct Stack* stack) {
return stack->array[stack->top];
}
// Function to calculate the maximum rectangular area
int getMaxArea(int arr[], int n) {
struct Stack* s = createStack(n);
int res = 0, tp, curr;
// Traverse all bars of the arrogram
for (int i = 0; i < n; i++) {
// Process the stack while the current element
// is smaller than the element corresponding to
// the top of the stack
while (!isEmpty(s) && arr[peek(s)] >= arr[i]) {
tp = pop(s);
// Calculate width and update result
int width = isEmpty(s) ? i : i - peek(s) - 1;
res = (res > arr[tp] * width) ? res : arr[tp] * width;
}
push(s, i);
}
// Process remaining elements in the stack
while (!isEmpty(s)) {
tp = pop(s);
curr = arr[tp] * (isEmpty(s) ? n : n - peek(s) - 1);
res = (res > curr) ? res : curr;
}
return res;
}
int main() {
int arr[] = {60, 20, 50, 40, 10, 50, 60};
int n = sizeof(arr) / sizeof(arr[0]);
printf("%d\n", getMaxArea(arr, n));
return 0;
}
Java
// Java program to find the largest rectangular area possible
// in a given histogram
import java.util.Stack;
class GfG {
// Function to calculate the maximum rectangular area
static int getMaxArea(int[] arr) {
int n = arr.length;
Stack<Integer> s = new Stack<>();
int res = 0, tp, curr;
for (int i = 0; i < n; i++) {
// Process the stack while the current element
// is smaller than the element corresponding to
// the top of the stack
while (!s.isEmpty() && arr[s.peek()] >= arr[i]) {
// The popped item is to be considered as the
// smallest element of the Histogram
tp = s.pop();
// For the popped item, previous smaller element
// is just below it in the stack (or current stack
// top) and next smaller element is i
int width = s.isEmpty() ? i : i - s.peek() - 1;
// Update the result if needed
res = Math.max(res, arr[tp] * width);
}
s.push(i);
}
// For the remaining items in the stack, next smaller does
// not exist. Previous smaller is the item just below in
// the stack.
while (!s.isEmpty()) {
tp = s.pop();
curr = arr[tp] * (s.isEmpty() ? n : n - s.peek() - 1);
res = Math.max(res, curr);
}
return res;
}
public static void main(String[] args) {
int[] arr = {60, 20, 50, 40, 10, 50, 60};
System.out.println(getMaxArea(arr));
}
}
Python
# Python program to find the largest rectangular area possible
# in a given histogram
# Function to calculate the maximum rectangular area
def getMaxArea(arr):
n = len(arr)
s = []
res = 0
for i in range(n):
# Process the stack while the current element
# is smaller than the element corresponding to
# the top of the stack
while s and arr[s[-1]] >= arr[i]:
# The popped item is to be considered as the
# smallest element of the Histogram
tp = s.pop()
# For the popped item, the previous smaller
# element is just below it in the stack (or
# the current stack top) and the next smaller
# element is i
width = i if not s else i - s[-1] - 1
# Update the result if needed
res = max(res, arr[tp] * width)
s.append(i)
# For the remaining items in the stack, next smaller does
# not exist. Previous smaller is the item just below in
# the stack.
while s:
tp = s.pop()
width = n if not s else n - s[-1] - 1
res = max(res, arr[tp] * width)
return res
if __name__ == "__main__":
arr = [60, 20, 50, 40, 10, 50, 60]
print(getMaxArea(arr))
C#
// C# program to find the largest rectangular area possible
// in a given histogram
using System;
using System.Collections.Generic;
class GfG {
// Function to calculate the maximum rectangular area
static int getMaxArea(int[] arr) {
int n = arr.Length;
Stack<int> s = new Stack<int>();
int res = 0, tp, curr;
// Traverse all bars of the arrogram
for (int i = 0; i < n; i++) {
// Process the stack while the current element
// is smaller than the element corresponding to
// the top of the stack
while (s.Count > 0 && arr[s.Peek()] >= arr[i]) {
tp = s.Pop();
// Calculate width and update result
int width = s.Count == 0 ? i : i - s.Peek() - 1;
res = Math.Max(res, arr[tp] * width);
}
s.Push(i);
}
// Process remaining elements in the stack
while (s.Count > 0) {
tp = s.Pop();
curr = arr[tp] * (s.Count == 0 ? n : n - s.Peek() - 1);
res = Math.Max(res, curr);
}
return res;
}
public static void Main() {
int[] arr = {60, 20, 50, 40, 10, 50, 60};
Console.WriteLine(getMaxArea(arr));
}
}
JavaScript
// JavaScript program to find the largest rectangular area possible
// in a given histogram
// Function to calculate the maximum rectangular area
function getMaxArea(arr) {
let n = arr.length;
let stack = [];
let res = 0;
// Traverse all bars of the arrogram
for (let i = 0; i < n; i++) {
// Process the stack while the current element
// is smaller than the element corresponding to
// the top of the stack
while (stack.length
&& arr[stack[stack.length - 1]] >= arr[i]) {
let tp = stack.pop();
// Calculate width and update result
let width
= stack.length === 0 ? i: i
- stack[stack.length - 1] - 1;
res = Math.max(res, arr[tp] * width);
}
stack.push(i);
}
// Process remaining elements in the stack
while (stack.length) {
let tp = stack.pop();
let curr = arr[tp] * (stack.length === 0 ? n
: n - stack[stack.length - 1] - 1);
res = Math.max(res, curr);
}
return res;
}
// Driver code
let arr = [ 60, 20, 50, 40, 10, 50, 60 ];
console.log(getMaxArea(arr));
[Alternate Approach] Using Divide and Conquer - O(n Log n) Time
The idea is to find the minimum value in the given array. Once we have index of the minimum value, the max area is maximum of following three values.
- Maximum area in left side of minimum value (Not including the min value)
- Maximum area in right side of minimum value (Not including the min value)
- Number of bars multiplied by minimum value.
Please refer Largest Rectangular Area in a histogram Using Divide and Conquer for detailed implementation.
Largest Rectangular Area in Histogram
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem