Largest Left-Truncatable Prime in a given base Last Updated : 23 Jul, 2025 Comments Improve Suggest changes Like Article Like Report Given an integer N representing the base of a number, the task is to find the largest left-truncatable prime in the given base N. Examples: Input: N = 3 Output: 23 Explanation: Left-truncatable prime in base N(= 3) are given below: (12)3 = (5)10 (212)3 = (23)10 Therefore, the largest left-truncatable prime in base N(= 3) is (23)10. Input: N = 5 Output: 7817 Approach: The idea is to generate all left-truncatable prime numbers in the given base N and print the largest left-truncatable prime number based on the following observations: If a number containing (i) digits is a left-truncatable prime number, then the numbers formed from the last (i - 1) digits must be a left-truncatable prime number. Therefore, to make a left-truncatable prime number of digits i, first find all the left-truncatable prime numbers of (i - 1) digits. Initialize an array, say candidates[], to store the all possible left truncatable prime numbers in the given base N.Iterate over the range [0, infinity] using variable i and insert all the left truncatable prime numbers of digits i. If no left truncatable number consisting of i digits is found, then return from the loop.Finally, print the maximum element present in the array candidates[]. Below is the implementation of the above approach: C++ #include <bits/stdc++.h> using namespace std; // Function to check if a number // is even or not bool is_even(int n) { return n % 2 == 0; } // Function to compute base^exp mod m int expmod(int base, int exp, int m) { if (exp == 0) { return 1; } else if (is_even(exp)) { return (int)pow(expmod(base, exp / 2, m), 2) % m; } else { return base * expmod(base, exp - 1, m) % m; } } // Function to check if a is // a composite number || not // using Miller-Rabin primality test bool try_composite(int a, int d, int n, int s) { // ((a) ^ d) % n equal to 1 if (expmod(a, d, n) == 1) { return false; } for (int i = 0; i < s; i++) { if (expmod(a, pow(2, i) * d, n) == n - 1) { return false; } } return true; } // Function to check if a number // is prime || not using // Miller-Rabin primality test bool is_probable_prime(int n, int k) { // Base Case if (n == 0 || n == 1) { return false; } if (n == 2) { return true; } if (n % 2 == 0) { return false; } int s = 0; int d = n - 1; while (true) { int quotient = d / 2; int remainder = d % 2; if (remainder == 1) { break; } s += 1; d = quotient; } // Iterate given number of k times for (int i = 0; i < k; i++) { int a = rand() % (n - 2) + 2; // If a is a composite number if (try_composite(a, d, n, s)) { return false; } } // No base tested showed // n as composite return true; } // Function to find the largest // left-truncatable prime number int largest_left_truncatable_prime(int base) { // Stores count of digits // in a number int radix = 0; // Stores left-truncatable prime vector<int> candidates{0}; // Iterate over the range [0, infinity] while (true) { // Store left-truncatable prime // containing i digits vector<int> new_candidates; // Stores base ^ radix int multiplier = pow(base, radix); // Iterate over all possible // value of the given base for (int i = 1; i < base; i++) { // Append the i in radix-th digit // in all (i - 1)-th digit // left-truncatable prime for (auto x : candidates) // If a number with i digits // is prime if (is_probable_prime( x + i * multiplier, 30)) new_candidates.push_back( x + i * multiplier); } // If no left-truncatable prime found // whose digit is radix if (new_candidates.size() == 0) return *max_element(candidates.begin(), candidates.end()); // Update candidates[] to all // left-truncatable prime // whose digit is radix candidates = new_candidates; // Update radix radix += 1; } } // Driver Code int main() { int N = 3; int ans = largest_left_truncatable_prime(N); cout << ans ; } // This code is contributed by Phasing17. Java import java.util.*; class Main { // Function to check if a is a composite number || not // using Miller-Rabin primality test static boolean TryComposite(long a, long d, long n, int s) { // ((a) ^ d) % n equal to 1 long x = ModPow(a, d, n); if (x == 1 || x == n - 1) { return false; } for (int i = 0; i < s; i++) { x = ModPow(x, 2, n); if (x == n - 1) { return false; } } return true; } // Function to compute base^exp mod m static long ModPow(long baseNumber, long exponent, long modulus) { long result = 1; while (exponent > 0) { if ((exponent & 1) == 1) { result = (result * baseNumber) % modulus; } baseNumber = (baseNumber * baseNumber) % modulus; exponent >>= 1; } return result; } // Function to check if a number is prime || not using // Miller-Rabin primality test static boolean IsProbablePrime(long n, int k) { // Base Case if (n == 0 || n == 1) { return false; } if (n == 2) { return true; } if (n % 2 == 0) { return false; } long d = n - 1; int s = 0; while (d % 2 == 0) { s++; d /= 2; } Random rnd = new Random(); // Iterate given number of k times for (int i = 0; i < k; i++) { long a = rnd.nextInt(-2 + (int)n - 1) + 2; // If a is a composite number if (TryComposite(a, d, n, s)) { return false; } } // No base tested showed // n as composite return true; } // Function to find the largest // left-truncatable prime number static long LargestLeftTruncatablePrime(int baseNumber) { // Stores count of digits // in a number int radix = 0; // Stores left-truncatable prime long[] candidates = { 0 }; // Iterate over the range [0, infinity] while (true) { long[] newCandidates = new long[0]; long multiplier = (long)Math.pow(baseNumber, radix); for (int i = 1; i < baseNumber; i++) { for (int j = 0; j < candidates.length; j++) { if (IsProbablePrime( candidates[j] + i * multiplier, 30)) { long[] temp = new long[newCandidates.length + 1]; temp[newCandidates.length ] = candidates[j] + i * multiplier; newCandidates = temp; } } } if (newCandidates.length == 0) { return candidates[0]; } candidates = newCandidates; radix++; } } // Driver code public static void main(String[] args) { System.out.println(LargestLeftTruncatablePrime(3)); } } // This code is contributed by phasing17. Python3 # Python program to implement # the above approach import random # Function to check if a is # a composite number or not # using Miller-Rabin primality test def try_composite(a, d, n, s): # ((a) ^ d) % n equal to 1 if pow(a, d, n) == 1: return False for i in range(s): if pow(a, 2**i * d, n) == n-1: return False return True # Function to check if a number # is prime or not using # Miller-Rabin primality test def is_probable_prime(n, k): # Base Case if n == 0 or n == 1: return False if n == 2: return True if n % 2 == 0: return False s = 0 d = n-1 while True: quotient, remainder = divmod(d, 2) if remainder == 1: break s += 1 d = quotient # Iterate given number of k times for i in range(k): a = random.randrange(2, n) # If a is a composite number if try_composite(a, d, n, s): return False # No base tested showed # n as composite return True # Function to find the largest # left-truncatable prime number def largest_left_truncatable_prime(base): # Stores count of digits # in a number radix = 0 # Stores left-truncatable prime candidates = [0] # Iterate over the range [0, infinity] while True: # Store left-truncatable prime # containing i digits new_candidates = [] # Stores base ^ radix multiplier = base ** radix # Iterate over all possible # value of the given base for i in range(1, base): # Append the i in radix-th digit # in all (i - 1)-th digit # left-truncatable prime for x in candidates: # If a number with i digits # is prime if is_probable_prime( x + i * multiplier, 30): new_candidates.append( x + i * multiplier) # If no left-truncatable prime found # whose digit is radix if len(new_candidates) == 0: return max(candidates) # Update candidates[] to all # left-truncatable prime # whose digit is radix candidates = new_candidates # Update radix radix += 1 # Driver Code if __name__ == "__main__": N = 3 ans = largest_left_truncatable_prime(N) print(ans) C# using System; class Program { // Function to check if a is a composite number || not // using Miller-Rabin primality test static bool TryComposite(long a, long d, long n, int s) { // ((a) ^ d) % n equal to 1 long x = ModPow(a, d, n); if (x == 1 || x == n - 1) { return false; } for (int i = 0; i < s; i++) { x = ModPow(x, 2, n); if (x == n - 1) { return false; } } return true; } // Function to compute base^exp mod m static long ModPow(long baseNumber, long exponent, long modulus) { long result = 1; while (exponent > 0) { if ((exponent & 1) == 1) { result = (result * baseNumber) % modulus; } baseNumber = (baseNumber * baseNumber) % modulus; exponent >>= 1; } return result; } // Function to check if a number is prime || not using // Miller-Rabin primality test static bool IsProbablePrime(long n, int k) { // Base Case if (n == 0 || n == 1) { return false; } if (n == 2) { return true; } if (n % 2 == 0) { return false; } long d = n - 1; int s = 0; while (d % 2 == 0) { s++; d /= 2; } Random rnd = new Random(); // Iterate given number of k times for (int i = 0; i < k; i++) { long a = rnd.Next(2, (int)n - 1); // If a is a composite number if (TryComposite(a, d, n, s)) { return false; } } // No base tested showed // n as composite return true; } // Function to find the largest // left-truncatable prime number static long LargestLeftTruncatablePrime(int baseNumber) { // Stores count of digits // in a number int radix = 0; // Stores left-truncatable prime long[] candidates = { 0 }; // Iterate over the range [0, infinity] while (true) { long[] newCandidates = new long[0]; long multiplier = (long)Math.Pow(baseNumber, radix); for (int i = 1; i < baseNumber; i++) { for (int j = 0; j < candidates.Length; j++) { if (IsProbablePrime( candidates[j] + i * multiplier, 30)) { Array.Resize(ref newCandidates, newCandidates.Length + 1); newCandidates[newCandidates.Length - 1] = candidates[j] + i * multiplier; } } } if (newCandidates.Length == 0) { return candidates[0]; } candidates = newCandidates; radix++; } } // Driver code static void Main(string[] args) { Console.WriteLine(LargestLeftTruncatablePrime(3)); } } // This code is contributed by phasing17. JavaScript // JS program to implement // the above approach function is_even(n) { return n % 2 === 0; } function expmod(base, exp, m) { return exp === 0 ? 1 : is_even(exp) ? expmod(base, exp / 2, m) ** 2 % m : base * expmod(base, exp - 1, m) % m; } // Function to check if a is // a composite number || not // using Miller-Rabin primality test function try_composite(a, d, n, s) { // ((a) ^ d) % n equal to 1 if (expmod(a, d, n) == 1) return false for (var i = 0; i < s; i++) if (expmod(a, 2**i * d, n) == n-1) return false return true } // Function to check if a number // is prime || not using // Miller-Rabin primality test function is_probable_prime(n, k) { // Base Case if (n == 0 || n == 1) return false if (n == 2) return true if (n % 2 == 0) return false let s = 0 let d = n-1 while (true) { var quotient = Math.trunc(d/2) var remainder = d % 2; if (remainder == 1) break s += 1 d = quotient } // Iterate given number of k times for (var i = 0; i < k; i++) { var a = Math.random() * (n - 2) + 2 // If a is a composite number if (try_composite(a, d, n, s)) return false } // No base tested showed // n as composite return true } // Function to find the largest // left-truncatable prime number function largest_left_truncatable_prime(base) { // Stores count of digits // in a number let radix = 0 // Stores left-truncatable prime let candidates = [0] // Iterate over the range [0, infinity] while (true) { // Store left-truncatable prime // containing i digits let new_candidates = [] // Stores base ^ radix let multiplier = base ** radix // Iterate over all possible // value of the given base for (var i = 1; i < base; i++) { // Append the i in radix-th digit // in all (i - 1)-th digit // left-truncatable prime for (let x of candidates) // If a number with i digits // is prime if (is_probable_prime( x + i * multiplier, 30)) new_candidates.push( x + i * multiplier) } // If no left-truncatable prime found // whose digit is radix if (new_candidates.length == 0) return Math.max(...candidates) // Update candidates[] to all // left-truncatable prime // whose digit is radix candidates = new_candidates // Update radix radix += 1 } } // Driver Code let N = 3 let ans = largest_left_truncatable_prime(N) console.log(ans) // This code is contributed by Phasing17. Output:23 Time Complexity: O(k * log3N), where k is the rounds performed in Miller-Rabin primality test Auxiliary Space: O(X), where X is the total count of left-truncatable prime in base N Comment More infoAdvertise with us Next Article Analysis of Algorithms H huzaifa0602 Follow Improve Article Tags : DSA Prime Number base-conversion Practice Tags : Prime Number Similar Reads Basics & PrerequisitesLogic Building ProblemsLogic building is about creating clear, step-by-step methods to solve problems using simple rules and principles. Itâs the heart of coding, enabling programmers to think, reason, and arrive at smart solutions just like we do.Here are some tips for improving your programming logic: Understand the pro 2 min read Analysis of AlgorithmsAnalysis of Algorithms is a fundamental aspect of computer science that involves evaluating performance of algorithms and programs. Efficiency is measured in terms of time and space.BasicsWhy is Analysis Important?Order of GrowthAsymptotic Analysis Worst, Average and Best Cases Asymptotic NotationsB 1 min read Data StructuresArray Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous 3 min read String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut 2 min read Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The 2 min read Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List: 2 min read Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first 2 min read Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems 2 min read Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most 4 min read Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of 3 min read Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this 15+ min read AlgorithmsSearching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input 2 min read Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ 3 min read Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution 14 min read Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get 3 min read Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net 3 min read Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of 3 min read Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit 4 min read AdvancedSegment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree 3 min read Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i 2 min read GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br 2 min read Interview PreparationInterview Corner: All Resources To Crack Any Tech InterviewThis article serves as your one-stop guide to interview preparation, designed to help you succeed across different experience levels and company expectations. Here is what you should expect in a Tech Interview, please remember the following points:Tech Interview Preparation does not have any fixed s 3 min read GfG160 - 160 Days of Problem SolvingAre you preparing for technical interviews and would like to be well-structured to improve your problem-solving skills? Well, we have good news for you! GeeksforGeeks proudly presents GfG160, a 160-day coding challenge starting on 15th November 2024. In this event, we will provide daily coding probl 3 min read Practice ProblemGeeksforGeeks Practice - Leading Online Coding PlatformGeeksforGeeks Practice is an online coding platform designed to help developers and students practice coding online and sharpen their programming skills with the following features. GfG 160: This consists of most popular interview problems organized topic wise and difficulty with with well written e 6 min read Problem of The Day - Develop the Habit of CodingDo you find it difficult to develop a habit of Coding? If yes, then we have a most effective solution for you - all you geeks need to do is solve one programming problem each day without any break, and BOOM, the results will surprise you! Let us tell you how:Suppose you commit to improve yourself an 5 min read Like