Open In App

Kth Smallest Element in a sorted array formed by reversing subarrays from a random index

Last Updated : 07 Sep, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a sorted array arr[] of size N and an integer K, the task is to find Kth smallest element present in the array. The given array has been obtained by reversing subarrays {arr[0], arr[R]} and {arr[R + 1], arr[N - 1]} at some random index R. If the key is not present in the array, print -1.

Examples:

Input: arr[] = { 4, 3, 2, 1, 8, 7, 6, 5 }, K = 2
Output: 2
Explanation: Sorted form of the array arr[] is { 1, 2, 3, 4, 5, 6, 7, 8 }. Therefore, the 2nd smallest element in the array arr[] is 2.

Input: arr[] = { 10, 8, 6, 5, 2, 1, 13, 12 }, K = 3
Output: 5

 

Naive Approach: The simplest approach to solve the problem is to sort the given array arr[] in increasing order and print the Kth smallest element in the array. 

Time Complexity: O(N*log(N))
Auxiliary Space: O(1)

Alternative approach of the above solution: We can sort the array without using any sorting technique which will surely reduce the time complexity. We can just find the pivot point P in the array(around which the rotation occurs) using binary search and just reverse the two subarrays [0, P + 1] and [P + 1, N] using std::reverse() function in C++.  

Reversing the subarrays: After finding the pivot point P, just find the reverse of the two subarrays as following:  

std::reverse(arr, arr + P + 1);  

std::reverse(arr + P + 1, arr + N);  

And thus we get the sorted array and we can print the Kth smallest element as arr[K-1]

C++
// C++ program for the above approach.
#include <bits/stdc++.h>
using namespace std;

/* Function to get pivot. For array 4, 3, 2, 1, 6, 5
   it returns 3 (index of 1) */
int findPivot(int arr[], int low, int high)
{
    // base cases
    if (high < low)
        return -1;
    if (high == low)
        return low;

    int mid = (low + high) / 2; /*low + (high - low)/2;*/
    if (mid < high && arr[mid] < arr[mid + 1])
        return mid;

    if (mid > low && arr[mid] > arr[mid - 1])
        return (mid - 1);

    if (arr[low] <= arr[mid])
        return findPivot(arr, low, mid - 1);

    return findPivot(arr, mid + 1, high);
}

// Driver Code
int main()
{

    // Given Input
    int arr[] = { 10, 8, 6, 5, 2, 1, 13, 12 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 3;

    // Function Call
    int P = findPivot(arr, 0, N - 1);

    // reversing first subarray
    reverse(arr, arr + P + 1);

    // reversing second subarray
    reverse(arr + P + 1, arr + N);
    // printing output
    cout << arr[K - 1];
    return 0;
}

// This code is contributed by Pranjay Vats
Java
// Java program for the above approach.
import java.util.*;

class GFG{

// Function to get pivot. For array 4, 3, 2, 1, 6, 5
// it returns 3 (index of 1) 
static int findPivot(int arr[], int low, int high)
{
    
    // Base cases
    if (high < low)
        return -1;
    if (high == low)
        return low;

    int mid = (low + high) / 2; /*low + (high - low)/2;*/
    if (mid < high && arr[mid] < arr[mid + 1])
        return mid;

    if (mid > low && arr[mid] > arr[mid - 1])
        return (mid - 1);

    if (arr[low] <= arr[mid])
        return findPivot(arr, low, mid - 1);

    return findPivot(arr, mid + 1, high);
}

static void reverse(int str[], int start, int end) 
{
    
    // Temporary variable to store character 
    int temp;
    
    while (start <= end) 
    {
        
        // Swapping the first and last character 
        temp = str[start];
        str[start] = str[end];
        str[end] = temp;
        start++;
        end--;
    }
}

// Driver Code
public static void main(String[] args)
{
    
    // Given Input
    int arr[] = { 10, 8, 6, 5, 2, 1, 13, 12 };
    int N = arr.length;
    int K = 3;

    // Function Call
    int P = findPivot(arr, 0, N - 1);

    // Reversing first subarray
    reverse(arr, 0, P);

    // Reversing second subarray
    reverse(arr, P, N - 1);
    
    // Printing output
    System.out.print(arr[K - 1]);
}
}

// This code is contributed by gauravrajput1
Python3
# Python3 program for the above approach.

# Function to get pivot. For array 4, 3, 2, 1, 6, 5
# it returns 3 (index of 1)
def findPivot(arr, low, high):
     
    # Base cases
    if (high < low):
        return -1
    if (high == low):
        return low
  
    mid = int((low + high) / 2) #low + (high - low)/2;
    if (mid < high and arr[mid] < arr[mid + 1]):
        return mid
  
    if (mid > low and arr[mid] > arr[mid - 1]):
        return (mid - 1)
  
    if (arr[low] <= arr[mid]):
        return findPivot(arr, low, mid - 1)
  
    return findPivot(arr, mid + 1, high)
  
def reverse(Str, start, end):
    while (start <= end):
        # Swapping the first and last character
        temp = Str[start]
        Str[start] = Str[end]
        Str[end] = temp
        start+=1
        end-=1

# Given Input
arr = [ 10, 8, 6, 5, 2, 1, 13, 12 ]
N = len(arr)
K = 3

# Function Call
P = findPivot(arr, 0, N - 1)

# Reversing first subarray
reverse(arr, 0, P)

# Reversing second subarray
reverse(arr, P, N - 1)
  
# Printing output
print(arr[K - 1])

# This code is contributed by decode2207.
C#
// C# program for the above approach.
using System;
class GFG {
    
    // Function to get pivot. For array 4, 3, 2, 1, 6, 5
    // it returns 3 (index of 1)
    static int findPivot(int[] arr, int low, int high)
    {
         
        // Base cases
        if (high < low)
            return -1;
        if (high == low)
            return low;
     
        int mid = (low + high) / 2; /*low + (high - low)/2;*/
        if (mid < high && arr[mid] < arr[mid + 1])
            return mid;
     
        if (mid > low && arr[mid] > arr[mid - 1])
            return (mid - 1);
     
        if (arr[low] <= arr[mid])
            return findPivot(arr, low, mid - 1);
     
        return findPivot(arr, mid + 1, high);
    }
     
    static void reverse(int[] str, int start, int end)
    {
         
        // Temporary variable to store character
        int temp;
         
        while (start <= end)
        {
             
            // Swapping the first and last character
            temp = str[start];
            str[start] = str[end];
            str[end] = temp;
            start++;
            end--;
        }
    }

  static void Main() {
    // Given Input
    int[] arr = { 10, 8, 6, 5, 2, 1, 13, 12 };
    int N = arr.Length;
    int K = 3;
 
    // Function Call
    int P = findPivot(arr, 0, N - 1);
 
    // Reversing first subarray
    reverse(arr, 0, P);
 
    // Reversing second subarray
    reverse(arr, P, N - 1);
     
    // Printing output
    Console.Write(arr[K - 1]);
  }
}

// This code is contributed by divyesh072019.
JavaScript
<script>
    // Javascript program for the above approach.
    
    /* Function to get pivot. For array 4, 3, 2, 1, 6, 5
   it returns 3 (index of 1) */
  function findPivot(arr, low, high)
  {
  
      // base cases
      if (high < low)
          return -1;
      if (high == low)
          return low;

      let mid = parseInt((low + high) / 2, 10); /*low + (high - low)/2;*/
      if (mid < high && arr[mid] < arr[mid + 1])
          return mid;

      if (mid > low && arr[mid] > arr[mid - 1])
          return (mid - 1);

      if (arr[low] <= arr[mid])
          return findPivot(arr, low, mid - 1);

      return findPivot(arr, mid + 1, high);
  }
  
  function reverse(i, j, arr)
  {
    let y = j - 1;
      for(let x = i; x < j; x++)
    {
        arr[x] = arr[y];
        y--;
    }
  }
  
  // Given Input
  let arr = [ 10, 8, 6, 5, 2, 1, 13, 12 ];
  let N = arr.length;
  let K = 3;

  // Function Call
  let P = findPivot(arr, 0, N - 1);
  
  // reversing first subarray
  reverse(0, P + 1, arr);

  // reversing second subarray
  reverse(P + 1, N, arr);
  
  // printing output
  document.write(arr[K - 1]);
  
  // This code is contributed by divyeshrabadiya07.
</script>

Output
5

Time Complexity: O(N)

Auxiliary Space: O(1)

Efficient Approach: The optimal idea is based on the observation that the Rth element is the smallest element because the elements in the range [1, R] are reversed. Now, if the random index is R, it means subarray [1, R] and [R + 1, N] are sorted in decreasing order. Therefore, the task reduceS to finding the value of R which can be obtained using binary search. Finally, print the Kth smallest element.

Follow the steps below to solve the problem:

  • Initialize l as 1 and h as N to store the boundary elements index of the search space for the binary search.
  • Loop while the value of l+1 < h
    • Store the middle element in a variable, mid as (l+h)/2.
    • If arr[l] ≥ arr[mid]. If it is true then check on the right side of mid by updating l to mid.
    • Otherwise, update r to mid.
  • Now after finding R, if K ≤  R, then the answer is arr[R-K+1]. Otherwise, arr[N-(K-R)+1].

Below is the implementation of the above approach: 

C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;

// Function to find the Kth element in a
// sorted and rotated array at random point
int findkthElement(vector<int> arr, int n, int K)
{
    
    // Set the boundaries for binary search
    int l = 0;
    int h = n - 1, r;

    // Apply binary search to find R
    while (l + 1 < h)
    {
        
        // Initialize the middle element
        int mid = (l + h) / 2;
        
        // Check in the right side of mid
        if (arr[l] >= arr[mid])
            l = mid;
            
        // Else check in the left side
        else
            h = mid;
    }
    
    // Random point either l or h
    if (arr[l] < arr[h])
        r = l;
    else
        r = h;
    
    // Return the kth smallest element
    if (K <= r + 1)
        return arr[r + 1 - K];
    else
        return arr[n - (K - (r + 1))];
}

// Driver Code
int main()
{
    
    // Given Input
    vector<int> arr = { 10, 8, 6, 5, 2, 1, 13, 12 };
    int n = arr.size();
    int K = 3;
    
    // Function Call
    cout << findkthElement(arr, n, K);
}

// This code is contributed by mohit kumar 29
Java
// Java program for the above approach
class GFG{
    
// Function to find the Kth element in a
// sorted and rotated array at random point
public static int findkthElement(int arr[], int n, int K)
{
    
    // Set the boundaries for binary search
    int l = 0;
    int h = n - 1, r;

    // Apply binary search to find R
    while (l + 1 < h)
    {
        
        // Initialize the middle element
        int mid = (l + h) / 2;
        
        // Check in the right side of mid
        if (arr[l] >= arr[mid])
            l = mid;
            
        // Else check in the left side
        else
            h = mid;
    }
    
    // Random point either l or h
    if (arr[l] < arr[h])
        r = l;
    else
        r = h;
    
    // Return the kth smallest element
    if (K <= r + 1)
        return arr[r + 1 - K];
    else
        return arr[n - (K - (r + 1))];
}

// Driver Code
public static void main(String args[])
{
    
    // Given Input
    int []arr = { 10, 8, 6, 5, 2, 1, 13, 12 };
    int n = arr.length;
    int K = 3;
    
    // Function Call
    System.out.println(findkthElement(arr, n, K));
}
}

// This code is contributed by SoumikMondal
Python3
# Python program for the above approach

# Function to find the Kth element in a 
# sorted and rotated array at random point
def findkthElement(arr, n, K):
  
      # Set the boundaries for binary search
    l = 0
    h = n-1

    # Apply binary search to find R
    while l+1 < h:
      
          # Initialize the middle element
        mid = (l+h)//2

        # Check in the right side of mid
        if arr[l] >= arr[mid]:
            l = mid

        # Else check in the left side
        else:
            h = mid

    # Random point either l or h
    if arr[l] < arr[h]:
        r = l
    else:
        r = h

    # Return the kth smallest element
    if K <= r+1:
        return arr[r+1-K]
    else:
        return arr[n-(K-(r+1))]


# Driver Code
if __name__ == "__main__":
  
      # Given Input
    arr = [10, 8, 6, 5, 2, 1, 13, 12]
    n = len(arr)
    K = 3
    
    # Function Call
    print(findkthElement(arr, n, K) )
C#
using System.IO;
using System;

class GFG {

    // Function to find the Kth element in a
    // sorted and rotated array at random point
    public static int findkthElement(int[] arr, int n,
                                     int K)
    {

        // Set the boundaries for binary search
        int l = 0;
        int h = n - 1, r;

        // Apply binary search to find R
        while (l + 1 < h) {

            // Initialize the middle element
            int mid = (l + h) / 2;

            // Check in the right side of mid
            if (arr[l] >= arr[mid])
                l = mid;

            // Else check in the left side
            else
                h = mid;
        }

        // Random point either l or h
        if (arr[l] < arr[h])
            r = l;
        else
            r = h;

        // Return the kth smallest element
        if (K <= r + 1)
            return arr[r + 1 - K];
        else
            return arr[n - (K - (r + 1))];
    }

    static void Main()
    {
        // Given Input
        int[] arr = { 10, 8, 6, 5, 2, 1, 13, 12 };
        int n = arr.Length;
        int K = 3;

        // Function Call
        Console.WriteLine(findkthElement(arr, n, K));
    }
}

// This code is contributed by abhinavjain194.
JavaScript
<script>

      // Function to find the Kth element in a
      // sorted and rotated array at random point
      function findkthElement(arr, n, K) {
        // Set the boundaries for binary search
        var l = 0;
        var h = n - 1,
          r;

        // Apply binary search to find R
        while (l + 1 < h) {
          // Initialize the middle element
          var mid = parseInt((l + h) / 2);

          // Check in the right side of mid
          if (arr[l] >= arr[mid]) l = mid;
          // Else check in the left side
          else h = mid;
        }

        // Random point either l or h
        if (arr[l] < arr[h]) r = l;
        else r = h;

        // Return the kth smallest element
        if (K <= r + 1) return arr[r + 1 - K];
        else return arr[n - (K - (r + 1))];
      }

      // Given Input
      var arr = [10, 8, 6, 5, 2, 1, 13, 12];
      var n = arr.length;
      var K = 3;

      // Function Call
      document.write(findkthElement(arr, n, K));
      
</script>

Output
5

Time Complexity: O(log(N))
Auxiliary Space: O(1)


Next Article

Similar Reads