Understanding OutOfMemoryError Exception in Java
Last Updated :
15 Sep, 2023
In Java, all objects are stored in a heap. They are allocated using a new operator. The OutOfMemoryError Exception in Java looks like this:
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
Usually, this error is thrown when the Java Virtual Machine cannot allocate an object because it is out of memory. No more memory could be made available by the garbage collector.
OutOfMemoryError usually means that you're doing something wrong, either holding onto objects too long or trying to process too much data at a time. Sometimes, it indicates a problem that's out of your control, such as a third-party library that caches strings or an application server that doesn't clean up after deploys. And sometimes, it has nothing to do with objects on the heap.
The java.lang.OutOfMemoryError exception can also be thrown by native library code when a native allocation cannot be satisfied (for example, if swap space is low). Let us understand various cases when the OutOfMemory error might occur.
Symptom or Root cause?
To find the cause, the text of the exception includes a detailed message at the end. Let us examine all the errors.
Error 1 - Java heap space:
This error arises due to the applications that make excessive use of finalizers. If a class has a finalize method, objects of that type do not have their space reclaimed at garbage collection time. Instead, after garbage collection, the objects are queued for finalization, which occurs later.
Implementation:
- finalizers are executed by a daemon thread that services the finalization queue.
- If the finalizer thread cannot keep up with the finalization queue, the Java heap could fill up, and this type of OutOfMemoryError exception would be thrown.
- The problem can also be as simple as a configuration issue, where the specified heap size (or the default size, if it is not specified) is insufficient for the application.
Java
// Java program to illustrate
// Heap error
import java.util.*;
public class Heap {
static List<String> list = new ArrayList<String>();
public static void main(String args[]) throws Exception
{
Integer[] array = new Integer[10000 * 10000];
}
}
Output:
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
at Heap.main(Heap.java:11)
When you execute the above code above you might expect it to run forever without any problems. As a result, over time, with the leaking code constantly used, the “cached” results end up consuming a lot of Java heap space, and when the leaked memory fills all of the available memory in the heap region and Garbage Collection is not able to clean it, the java.lang.OutOfMemoryError:Java heap space is thrown.
Prevention: Check how to monitor objects for which finalization is pending in Monitor the Objects Pending Finalization.
Error 2 - GC Overhead limit exceeded:
This error indicates that the garbage collector is running all the time and Java program is making very slow progress. After a garbage collection, if the Java process is spending more than approximately 98% of its time doing garbage collection and if it is recovering less than 2% of the heap and has been doing so far the last 5 (compile-time constant) consecutive garbage collections, then a java.lang.OutOfMemoryError is thrown.
This exception is typically thrown because the amount of live data barely fits into the Java heap having little free space for new allocations.
Java
// Java program to illustrate
// GC Overhead limit exceeded
import java.util.*;
public class Wrapper {
public static void main(String args[]) throws Exception
{
Map m = new HashMap();
m = System.getProperties();
Random r = new Random();
while (true) {
m.put(r.nextInt(), "randomValue");
}
}
}
If you run this program with java -Xmx100m -XX:+UseParallelGC Wrapper, then the output will be something like this :
Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.lang.Integer.valueOf(Integer.java:832)
at Wrapper.main(error.java:9)
Prevention: Increase the heap size and turn off it with the command line flag -XX:-UseGCOverheadLimit.
Error 3 - Permgen space is thrown:
Java memory is separated into different regions. The size of all those regions, including the permgen area, is set during the JVM launch. If you do not set the sizes yourself, platform-specific defaults will be used.
The java.lang.OutOfMemoryError: PermGen space error indicates that the Permanent Generation’s area in memory is exhausted.
Java
// Java program to illustrate
// Permgen Space error
import javassist.ClassPool;
public class Permgen {
static ClassPool classPool = ClassPool.getDefault();
public static void main(String args[]) throws Exception
{
for (int i = 0; i < 1000000000; i++) {
Class c = classPool.makeClass("com.saket.demo.Permgen" + i).toClass();
System.out.println(c.getName());
}
}
}
In the above sample code, code iterates over a loop and generates classes at run time. Class generation complexity is being taken care of by the Javassist library.
Running the above code will keep generating new classes and loading their definitions into Permgen space until the space is fully utilized and the java.lang.OutOfMemoryError: Permgen space is thrown.
Prevention : When the OutOfMemoryError due to PermGen exhaustion is caused during the application launch, the solution is simple. The application just needs more room to load all the classes to the PermGen area, so we need to increase its size. To do so, alter your application launch configuration and add (or increase if present) the -XX:MaxPermSize parameter similar to the following example:
java -XX:MaxPermSize=512m com.saket.demo.Permgen
Error 4 - Metaspace:
Java class metadata is allocated in native memory. Suppose metaspace for class metadata is exhausted, a java.lang.OutOfMemoryError exception with a detail MetaSpace is thrown.
The amount of metaspace used for class metadata is limited by the parameter MaxMetaSpaceSize, which is specified on the command line. When the amount of native memory needed for a class metadata exceeds MaxMetaSpaceSize, a java.lang.OutOfMemoryError exception with a detail MetaSpace is thrown.
Java
// Java program to illustrate
// Metaspace error
import java.util.*;
public class Metaspace {
static javassist.ClassPool cp
= javassist.ClassPool.getDefault();
public static void main(String args[]) throws Exception
{
for (int i = 0; i < 100000; i++) {
Class c = cp.makeClass(
"com.saket.demo.Metaspace" + i)
.toClass();
}
}
}
This code will keep generating new classes and loading their definitions to Metaspace until the space is fully utilized and the java.lang.OutOfMemoryError: Metaspace is thrown. When launched with -XX:MaxMetaspaceSize=64m then on Mac OS X my Java 1.8.0_05 dies at around 70, 000 classes loaded.
Prevention: If MaxMetaSpaceSize, has been set on the command line, increase its value. MetaSpace is allocated from the same address spaces as the Java heap. Reducing the size of the Java heap will make more space available for MetaSpace. This is only a correct trade-off if there is an excess of free space in the Java heap.
Error 5 - Requested array size exceeds VM limit:
This error indicates that the application attempted to allocate an array that is larger than the heap size. For example, if an application attempts to allocate an array of 1024 MB but the maximum heap size is 512 MB then OutOfMemoryError will be thrown with "Requested array size exceeds VM limit".
Java
// Java program to illustrate
// Requested array size
// exceeds VM limit error
import java.util.*;
public class GFG {
static List<String> list = new ArrayList<String>();
public static void main(String args[]) throws Exception
{
Integer[] array = new Integer[10000 * 10000];
}
}
Output:
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
at GFG.main(GFG.java:12)
The java.lang.OutOfMemoryError: Requested array size exceeds VM limit can appear as a result of either of the following situations:
- Your arrays grow too big and end up having a size between the platform limit and the Integer.MAX_INT
- You deliberately try to allocate arrays larger than 2^31-1 elements to experiment with the limits.
Error 6 - Request size bytes for a reason. Out of swap space?:
This apparent exception occurred when an allocation from the native heap failed and the native heap might be close to exhaustion. The error indicates the size (in bytes) of the request that failed and the reason for the memory request. Usually, the reason is the name of the source module reporting the allocation failure, although sometimes it is the actual reason.
The java.lang.OutOfMemoryError: Out of swap space error is often caused by operating-system-level issues, such as:
- The operating system is configured with insufficient swap space.
- Another process on the system is consuming all memory resources.
Prevention: When this error message is thrown, the VM invokes the fatal error handling mechanism (that is, it generates a deadly error log file, which contains helpful information about the thread, process, and system at the time of the crash). In the case of native heap exhaustion, the heap memory and memory map information in the log can be useful.
Error 7 - reason stack_trace_with_native_method:
Whenever this error message(reason stack_trace_with_native_method) is thrown then a stack trace is printed in which the top frame is a native method, then this is an indication that a native method has encountered an allocation failure. The difference between this and the previous message is that the allocation failure was detected in a Java Native Interface (JNI) or native method rather than the JVM code.
Java
// Java program to illustrate
// new native thread error
import java.util.*;
public class GFG {
public static void main(String args[]) throws Exception
{
while (true) {
new Thread(new Runnable() {
public void run()
{
try {
Thread.sleep(1000000000);
}
catch (InterruptedException e) {
}
}
}).start();
}
}
}
The exact native thread limit is platform-dependent. For example, tests Mac OS X reveals that: 64-bit Mac OS X 10.9, Java 1.7.0_45 – JVM dies after #2031 threads have been created
Prevention: Use native utilities of the OS to diagnose the issue further. For more information about tools available for various operating systems, see Native Operating System tools.
Similar Reads
Java Tutorial Java is a high-level, object-oriented programming language used to build web apps, mobile applications, and enterprise software systems. It is known for its Write Once, Run Anywhere capability, which means code written in Java can run on any device that supports the Java Virtual Machine (JVM).Java s
10 min read
Basics
Introduction to JavaJava is a high-level, object-oriented programming language developed by Sun Microsystems in 1995. It is platform-independent, which means we can write code once and run it anywhere using the Java Virtual Machine (JVM). Java is mostly used for building desktop applications, web applications, Android
4 min read
Java Programming BasicsJava is one of the most popular and widely used programming language and platform. A platform is an environment that helps to develop and run programs written in any programming language. Java is fast, reliable and secure. From desktop to web applications, scientific supercomputers to gaming console
4 min read
Java MethodsJava Methods are blocks of code that perform a specific task. A method allows us to reuse code, improving both efficiency and organization. All methods in Java must belong to a class. Methods are similar to functions and expose the behavior of objects.Example: Java program to demonstrate how to crea
7 min read
Access Modifiers in JavaIn Java, access modifiers are essential tools that define how the members of a class, like variables, methods, and even the class itself, can be accessed from other parts of our program. They are an important part of building secure and modular code when designing large applications. In this article
6 min read
Arrays in JavaIn Java, an array is an important linear data structure that allows us to store multiple values of the same type. Arrays in Java are objects, like all other objects in Java, arrays implicitly inherit from the java.lang.Object class. This allows you to invoke methods defined in Object (such as toStri
9 min read
Java StringsIn Java, a String is the type of object that can store a sequence of characters enclosed by double quotes and every character is stored in 16 bits, i.e., using UTF 16-bit encoding. A string acts the same as an array of characters. Java provides a robust and flexible API for handling strings, allowin
8 min read
Regular Expressions in JavaIn Java, Regular Expressions or Regex (in short) in Java is an API for defining String patterns that can be used for searching, manipulating, and editing a string in Java. Email validation and passwords are a few areas of strings where Regex is widely used to define the constraints. Regular Expressi
7 min read
OOPs & Interfaces
Classes and Objects in JavaIn Java, classes and objects are basic concepts of Object Oriented Programming (OOPs) that are used to represent real-world concepts and entities. A class is a template to create objects having similar properties and behavior, or in other words, we can say that a class is a blueprint for objects.An
10 min read
Java ConstructorsIn Java, constructors play an important role in object creation. A constructor is a special block of code that is called when an object is created. Its main job is to initialize the object, to set up its internal state, or to assign default values to its attributes. This process happens automaticall
10 min read
Java OOP(Object Oriented Programming) ConceptsBefore Object-Oriented Programming (OOPs), most programs used a procedural approach, where the focus was on writing step-by-step functions. This made it harder to manage and reuse code in large applications.To overcome these limitations, Object-Oriented Programming was introduced. Java is built arou
10 min read
Java PackagesPackages in Java are a mechanism that encapsulates a group of classes, sub-packages and interfaces. Packages are used for: Prevent naming conflicts by allowing classes with the same name to exist in different packages, like college.staff.cse.Employee and college.staff.ee.Employee.They make it easier
8 min read
Java InterfaceAn Interface in Java programming language is defined as an abstract type used to specify the behaviour of a class. An interface in Java is a blueprint of a behaviour. A Java interface contains static constants and abstract methods. Key Properties of Interface:The interface in Java is a mechanism to
11 min read
Collections
Exception Handling
Java Exception HandlingException handling in Java is an effective mechanism for managing runtime errors to ensure the application's regular flow is maintained. Some Common examples of exceptions include ClassNotFoundException, IOException, SQLException, RemoteException, etc. By handling these exceptions, Java enables deve
8 min read
Java Try Catch BlockA try-catch block in Java is a mechanism to handle exceptions. This make sure that the application continues to run even if an error occurs. The code inside the try block is executed, and if any exception occurs, it is then caught by the catch block.Example: Here, we are going to handle the Arithmet
4 min read
Java final, finally and finalizeIn Java, the final, finally, and finalize keywords play an important role in exception handling. The main difference between final, finally, and finalize is listed below:final: The final is the keyword that can be used for immutability and restrictions in variables, methods, and classes.finally: The
4 min read
Chained Exceptions in JavaChained Exceptions in Java allow associating one exception with another, i.e. one exception describes the cause of another exception. For example, consider a situation in which a method throws an ArithmeticException because of an attempt to divide by zero.But the root cause of the error was an I/O f
3 min read
Null Pointer Exception in JavaA NullPointerException in Java is a RuntimeException. It occurs when a program attempts to use an object reference that has the null value. In Java, "null" is a special value that can be assigned to object references to indicate the absence of a value.Reasons for Null Pointer ExceptionA NullPointerE
5 min read
Exception Handling with Method Overriding in JavaIn Java, an exception is an unwanted or unexpected event that occurs during a program's execution, i.e., at runtime, and disrupts the normal flow of the programâs instructions. Exception handling in Java handles runtime errors and helps maintain the program's normal flow by using constructs like try
5 min read
Java Advanced
Java Multithreading TutorialThreads are the backbone of multithreading. We are living in the real world which in itself is caught on the web surrounded by lots of applications. With the advancement in technologies, we cannot achieve the speed required to run them simultaneously unless we introduce the concept of multi-tasking
15+ min read
Synchronization in JavaIn multithreading, synchronization is important to make sure multiple threads safely work on shared resources. Without synchronization, data can become inconsistent or corrupted if multiple threads access and modify shared variables at the same time. In Java, it is a mechanism that ensures that only
10 min read
File Handling in JavaIn Java, with the help of File Class, we can work with files. This File Class is inside the java.io package. The File class can be used to create an object of the class and then specifying the name of the file.Why File Handling is Required?File Handling is an integral part of any programming languag
6 min read
Java Method ReferencesIn Java, a method is a collection of statements that perform some specific task and return the result to the caller. A method reference is the shorthand syntax for a lambda expression that contains just one method call. In general, one does not have to pass arguments to method references.Why Use Met
9 min read
Java 8 Stream TutorialJava 8 introduces Stream, which is a new abstract layer, and some new additional packages in Java 8 called java.util.stream. A Stream is a sequence of components that can be processed sequentially. These packages include classes, interfaces, and enum to allow functional-style operations on the eleme
15+ min read
Java NetworkingWhen computing devices such as laptops, desktops, servers, smartphones, and tablets and an eternally-expanding arrangement of IoT gadgets such as cameras, door locks, doorbells, refrigerators, audio/visual systems, thermostats, and various sensors are sharing information and data with each other is
15+ min read
JDBC TutorialJDBC stands for Java Database Connectivity. JDBC is a Java API or tool used in Java applications to interact with the database. It is a specification from Sun Microsystems that provides APIs for Java applications to communicate with different databases. Interfaces and Classes for JDBC API comes unde
12 min read
Java Memory ManagementJava memory management is the process by which the Java Virtual Machine (JVM) automatically handles the allocation and deallocation of memory. It uses a garbage collector to reclaim memory by removing unused objects, eliminating the need for manual memory managementJVM Memory StructureJVM defines va
4 min read
Garbage Collection in JavaGarbage collection in Java is an automatic memory management process that helps Java programs run efficiently. Java programs compile to bytecode that can be run on a Java Virtual Machine (JVM). When Java programs run on the JVM, objects in the heap are created, which is a portion of memory dedicated
7 min read
Memory Leaks in JavaIn programming, a memory leak happens when a program keeps using memory but does not give it back when it's done. It simply means the program slowly uses more and more memory, which can make things slow and even stop working. Working of Memory Management in JavaJava has automatic garbage collection,
3 min read
Practice Java
Java Interview Questions and AnswersJava is one of the most popular programming languages in the world, known for its versatility, portability, and wide range of applications. Java is the most used language in top companies such as Uber, Airbnb, Google, Netflix, Instagram, Spotify, Amazon, and many more because of its features and per
15+ min read
Java Programs - Java Programming ExamplesIn this article, we will learn and prepare for Interviews using Java Programming Examples. From basic Java programs like the Fibonacci series, Prime numbers, Factorial numbers, and Palindrome numbers to advanced Java programs.Java is one of the most popular programming languages today because of its
8 min read
Java Exercises - Basic to Advanced Java Practice Programs with SolutionsLooking for Java exercises to test your Java skills, then explore our topic-wise Java practice exercises? Here you will get 25 plus practice problems that help to upscale your Java skills. As we know Java is one of the most popular languages because of its robust and secure nature. But, programmers
7 min read
Java Quiz | Level Up Your Java SkillsThe best way to scale up your coding skills is by practicing the exercise. And if you are a Java programmer looking to test your Java skills and knowledge? Then, this Java quiz is designed to challenge your understanding of Java programming concepts and assess your excellence in the language. In thi
1 min read
Top 50 Java Project Ideas For Beginners and Advanced [Update 2025]Java is one of the most popular and versatile programming languages, known for its reliability, security, and platform independence. Developed by James Gosling in 1982, Java is widely used across industries like big data, mobile development, finance, and e-commerce.Building Java projects is an excel
15+ min read