In Java, HashMap is part of the Java Collections Framework and is found in the java.util package. It provides the basic implementation of the Map interface in Java. HashMap stores data in (key, value) pairs. Each key is associated with a value, and you can access the value by using the corresponding key.
- Internally uses Hashing (similar to Hashtable in Java).
- Not synchronized (unlike Hashtable in Java) and hence faster for most of the cases.
- Allows to store the null keys as well, but there should be only one null key object, and there can be any number of null values.
- Duplicate keys are not allowed in HashMap, if you try to insert the duplicate key, it will replace the existing value of the corresponding key.
- HashMap uses keys in the same way as an Array uses an index.
- HashMap allows for efficient key-based retrieval, insertion, and removal with an average O(1) time complexity.
Example:
Java
//Driver Code Starts
// Java Program to Create
// HashMap in Java
import java.util.HashMap;
// Driver Class
public class ExampleHashMap {
// main function
public static void main(String[] args) {
//Driver Code Ends
// Create a HashMap
HashMap<String, Integer> hashMap = new HashMap<>();
// Add elements to the HashMap
hashMap.put("John", 25);
hashMap.put("Jane", 30);
hashMap.put("Jim", 35);
//Driver Code Starts
// Access elements in the HashMap
System.out.println(hashMap.get("John"));
// Output: 25
// Remove an element from the HashMap
hashMap.remove("Jim");
// Check if an element is present in the HashMap
System.out.println(hashMap.containsKey("Jim"));
// Output: false
// Get the size of the HashMap
System.out.println(hashMap.size());
// Output: 2
}
}
//Driver Code Ends
HashMap Declaration
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable
It takes two parameters namely as follows:
- The type of keys maintained by this map
- The type of mapped values
Note: Keys and value can't be primitive datatype. Key in Hashmap is valid if it implements hashCode() and equals() method , it should also be immutable (immutable custom object ) so that hashcode and equality remains constant. Value in hashmap can be any wrapper class, custom objects, arrays, any reference type or even null . For example, Hashmap can have array as value but not as key.
HashMap in Java implements Serializable, Cloneable, Map<K, V> interfaces.Java HashMap extends AbstractMap<K, V> class. The direct subclasses are LinkedHashMap and PrinterStateReasons.
Hierarchy of HashMap in Java
Characteristics of HashMap
A HashMap is a data structure that is used to store and retrieve values based on keys. Some of the key characteristics of a hashmap include:
- Not ordered: HashMaps are not ordered, which means that the order in which elements are added to the map is not preserved. However, LinkedHashMap is a variation of HashMap that preserves the insertion order.
- Thread-unsafe: HashMaps are not thread-safe, which means that if multiple threads access the same hashmap simultaneously, it can lead to data inconsistencies. If thread safety is required, ConcurrentHashMap can be used.
- Capacity and load factor: HashMaps have a capacity, which is the number of elements that it can hold, and a load factor, which is the measure of how full the hashmap can be before it is resized.
Java HashMap Constructors
HashMap provides 4 constructors and the access modifier of each is public which are listed as follows:
- HashMap()
- HashMap(int initialCapacity)
- HashMap(int initialCapacity, float loadFactor)
- HashMap(Map map)
Now discuss the above constructors one by one alongside implementing the same with the help of clean Java programs.
1. HashMap()
It is the default constructor which creates an instance of HashMap with an initial capacity of 16 and a load factor of 0.75.
Syntax:
HashMap<K, V> hm = new HashMap<K, V>();
Example:
Java
// Java program to Demonstrate the HashMap() constructor
// Importing basic required classes
import java.io.*;
import java.util.*;
// Main class
// To add elements to HashMap
class GFG {
// Main driver method
public static void main(String args[])
{
// No need to mention the
// Generic type twice
HashMap<Integer, String> hm1 = new HashMap<>();
// Initialization of a HashMap using Generics
HashMap<Integer, String> hm2
= new HashMap<Integer, String>();
// Adding elements using put method
// Custom input elements
hm1.put(1, "one");
hm1.put(2, "two");
hm1.put(3, "three");
hm2.put(4, "four");
hm2.put(5, "five");
hm2.put(6, "six");
// Print and display mapping of HashMap 1
System.out.println("Mappings of HashMap hm1 are : "
+ hm1);
// Print and display mapping of HashMap 2
System.out.println("Mapping of HashMap hm2 are : "
+ hm2);
}
}
OutputMappings of HashMap hm1 are : {1=one, 2=two, 3=three}
Mapping of HashMap hm2 are : {4=four, 5=five, 6=six}
2. HashMap(int initialCapacity)
It creates a HashMap instance with a specified initial capacity and load factor of 0.75.
Syntax:
HashMap<K, V> hm = new HashMap<K, V>(int initialCapacity);
Example:
Java
// Java program to Demonstrate
// HashMap(int initialCapacity) Constructor
// Importing basic classes
import java.io.*;
import java.util.*;
// Main class
// To add elements to HashMap
class AddElementsToHashMap {
// Main driver method
public static void main(String args[])
{
// No need to mention the
// Generic type twice
HashMap<Integer, String> hm1 = new HashMap<>(10);
// Initialization of a HashMap using Generics
HashMap<Integer, String> hm2
= new HashMap<Integer, String>(2);
// Adding elements to object of HashMap
// using put method
// HashMap 1
hm1.put(1, "one");
hm1.put(2, "two");
hm1.put(3, "three");
// HashMap 2
hm2.put(4, "four");
hm2.put(5, "five");
hm2.put(6, "six");
// Printing elements of HashMap 1
System.out.println("Mappings of HashMap hm1 are : "
+ hm1);
// Printing elements of HashMap 2
System.out.println("Mapping of HashMap hm2 are : "
+ hm2);
}
}
OutputMappings of HashMap hm1 are : {1=one, 2=two, 3=three}
Mapping of HashMap hm2 are : {4=four, 5=five, 6=six}
3. HashMap(int initialCapacity, float loadFactor)
It creates a HashMap instance with a specified initial capacity and specified load factor.
Syntax:
HashMap<K, V> hm = new HashMap<K, V>(int initialCapacity, float loadFactor);
Example:
Java
// Java program to Demonstrate
// HashMap(int initialCapacity,float loadFactor) Constructor
// Importing basic classes
import java.io.*;
import java.util.*;
// Main class
// To add elements to HashMap
class GFG {
// Main driver method
public static void main(String args[])
{
// No need to mention the generic type twice
HashMap<Integer, String> hm1
= new HashMap<>(5, 0.75f);
// Initialization of a HashMap using Generics
HashMap<Integer, String> hm2
= new HashMap<Integer, String>(3, 0.5f);
// Add Elements using put() method
// Custom input elements
hm1.put(1, "one");
hm1.put(2, "two");
hm1.put(3, "three");
hm2.put(4, "four");
hm2.put(5, "five");
hm2.put(6, "six");
// Print and display elements in object of hashMap 1
System.out.println("Mappings of HashMap hm1 are : "
+ hm1);
// Print and display elements in object of hashMap 2
System.out.println("Mapping of HashMap hm2 are : "
+ hm2);
}
}
OutputMappings of HashMap hm1 are : {1=one, 2=two, 3=three}
Mapping of HashMap hm2 are : {4=four, 5=five, 6=six}
4. HashMap(Map map)
It creates an instance of HashMap with the same mappings as the specified map.
HashMap<K, V> hm = new HashMap<K, V>(Map map);
Java
// Java program to demonstrate the
// HashMap(Map map) Constructor
import java.io.*;
import java.util.*;
class AddElementsToHashMap {
public static void main(String args[])
{
// No need to mention the
// Generic type twice
Map<Integer, String> hm1 = new HashMap<>();
// Add Elements using put method
hm1.put(1, "one");
hm1.put(2, "two");
hm1.put(3, "three");
// Initialization of a HashMap
// using Generics
HashMap<Integer, String> hm2
= new HashMap<Integer, String>(hm1);
System.out.println("Mappings of HashMap hm1 are : "
+ hm1);
System.out.println("Mapping of HashMap hm2 are : "
+ hm2);
}
}
OutputMappings of HashMap hm1 are : {1=one, 2=two, 3=three}
Mapping of HashMap hm2 are : {1=one, 2=two, 3=three}
Performing Various Operations on HashMap
1. Adding Elements in HashMap in Java
To add an element to the map, we can use the put() method. However, the insertion order is not retained in the Hashmap. Internally, for every element, a separate hash is generated and the elements are indexed based on this hash to make it more efficient.
Java
// Java program to add elements
// to the HashMap
import java.io.*;
import java.util.*;
class AddElementsToHashMap {
public static void main(String args[])
{
// No need to mention the
// Generic type twice
HashMap<Integer, String> hm1 = new HashMap<>();
// Initialization of a HashMap
// using Generics
HashMap<Integer, String> hm2
= new HashMap<Integer, String>();
// Add Elements using put method
hm1.put(1, "Geeks");
hm1.put(2, "For");
hm1.put(3, "Geeks");
hm2.put(1, "Geeks");
hm2.put(2, "For");
hm2.put(3, "Geeks");
System.out.println("Mappings of HashMap hm1 are : "
+ hm1);
System.out.println("Mapping of HashMap hm2 are : "
+ hm2);
}
}
OutputMappings of HashMap hm1 are : {1=Geeks, 2=For, 3=Geeks}
Mapping of HashMap hm2 are : {1=Geeks, 2=For, 3=Geeks}
2. Changing Elements in HashMap in Java
After adding the elements if we wish to change the element, it can be done by again adding the element with the put() method. Since the elements in the map are indexed using the keys, the value of the key can be changed by simply inserting the updated value for the key for which we wish to change.
Java
// Java program to change
// elements of HashMap
import java.io.*;
import java.util.*;
class ChangeElementsOfHashMap {
public static void main(String args[])
{
// Initialization of a HashMap
HashMap<Integer, String> hm
= new HashMap<Integer, String>();
// Change Value using put method
hm.put(1, "Geeks");
hm.put(2, "Geeks");
hm.put(3, "Geeks");
System.out.println("Initial Map " + hm);
hm.put(2, "For");
System.out.println("Updated Map " + hm);
}
}
OutputInitial Map {1=Geeks, 2=Geeks, 3=Geeks}
Updated Map {1=Geeks, 2=For, 3=Geeks}
3. Removing Element from Java HashMap
To remove an element from the Map, we can use the remove() method. This method takes the key value and removes the mapping for a key from this map if it is present in the map.
Java
// Java program to remove
// elements from HashMap
import java.io.*;
import java.util.*;
class RemoveElementsOfHashMap{
public static void main(String args[])
{
// Initialization of a HashMap
Map<Integer, String> hm
= new HashMap<Integer, String>();
// Add elements using put method
hm.put(1, "Geeks");
hm.put(2, "For");
hm.put(3, "Geeks");
hm.put(4, "For");
// Initial HashMap
System.out.println("Mappings of HashMap are : "
+ hm);
// remove element with a key
// using remove method
hm.remove(4);
// Final HashMap
System.out.println("Mappings after removal are : "
+ hm);
}
}
OutputMappings of HashMap are : {1=Geeks, 2=For, 3=Geeks, 4=For}
Mappings after removal are : {1=Geeks, 2=For, 3=Geeks}
4. Traversal of Java HashMap
We can use the Iterator interface to traverse over any structure of the Collection Framework. Since Iterators work with one type of data we use Entry< ? , ? > to resolve the two separate types into a compatible format. Then using the next() method we print the entries of HashMap.
Java
// Java program to traversal a
// Java.util.HashMap
import java.util.HashMap;
import java.util.Map;
public class TraversalTheHashMap {
public static void main(String[] args)
{
// initialize a HashMap
HashMap<String, Integer> map = new HashMap<>();
// Add elements using put method
map.put("vishal", 10);
map.put("sachin", 30);
map.put("vaibhav", 20);
// Iterate the map using
// for-each loop
for (Map.Entry<String, Integer> e : map.entrySet())
System.out.println("Key: " + e.getKey()
+ " Value: " + e.getValue());
}
}
OutputKey: vaibhav Value: 20
Key: vishal Value: 10
Key: sachin Value: 30
Time and Space Complexity
HashMap provides constant time complexity for basic operations, get and put if the hash function is properly written and it disperses the elements properly among the buckets. Iteration over HashMap depends on the capacity of HashMap and the number of key-value pairs. It is directly proportional to the capacity + size. Capacity is the number of buckets in HashMap. So it is not a good idea to keep a high number of buckets in HashMap initially.
Methods | Time Complexity | Space Complexity |
---|
Adding Elements in HashMap | O(1) | O(N) |
---|
Removing Element from HashMap | O(1) | O(N) |
---|
Extracting Element from Java | O(1) | O(N) |
---|
DSA Problems On HashMap
- Count Frequencies in an Array
- Most Frequent Element
- Count distinct elements in every window of size K
- Check if two arrays are equal or not
- 2 Sum - Count Pairs with target sum
- Count all pairs with absolute difference equal to K
- Check If Array Pair Sums Divisible by K
- Max distance between two occurrences in array
- Subarray with Given Sum – Handles Negative Numbers
- Remove minimum elements such that no common elements exist in two arrays
- 3 Sum - Count all triplets with target sum
- Longest Subarray with Sum Divisible by K
- Longest Subarray having Majority Elements Greater than K
Important Features
To access a value one must know its key. HashMap is known as HashMap because it uses a technique called Hashing. Hashing is a technique of converting a large String to a small String that represents the same String. A shorter value helps in indexing and faster searches. HashSet also uses HashMap internally.
A few important features of HashMap are:
- HashMap is a part of Java.util package.
- HashMap extends an abstract class AbstractMap which also provides an incomplete implementation of the Map interface.
- It also implements Cloneable and Serializable interfaces. K and V in the above definition represent Key and Value respectively.
- HashMap doesn't allow duplicate keys but allows duplicate values. That means A single key can't contain more than 1 value but more than 1 key can contain a single value.
- HashMap allows a null key also but only once and multiple null values.
- This class makes no guarantees as to the order of the map; in particular, it does not guarantee that the order will remain constant over time. It is roughly similar to HashTable but is unsynchronized.
Internal Structure of HashMap
Internally HashMap contains an array of Node and a node is represented as a class that contains 4 fields:
- int hash
- K key
- V value
- Node next
It can be seen that the node contains a reference to its object. So it's a linked list.
HashMap:

Node:

Performance of HashMap
The performance of HashMap depends on 2 parameters which are named as follows:
- Initial Capacity
- Load Factor
1. Initial Capacity - It is the capacity of HashMap at the time of its creation (It is the number of buckets a HashMap can hold when the HashMap is instantiated). In java, it is 2^4=16 initially, meaning it can hold 16 key-value pairs.
2. Load Factor - It is the percent value of the capacity after which the capacity of Hashmap is to be increased (It is the percentage fill of buckets after which Rehashing takes place). In java, it is 0.75f by default, meaning the rehashing takes place after filling 75% of the capacity.
3. Threshold - It is the product of Load Factor and Initial Capacity. In java, by default, it is (16 * 0.75 = 12). That is, Rehashing takes place after inserting 12 key-value pairs into the HashMap.
4. Rehashing - It is the process of doubling the capacity of the HashMap after it reaches its Threshold. In java, HashMap continues to rehash(by default) in the following sequence - 2^4, 2^5, 2^6, 2^7, .... so on.
If the initial capacity is kept higher then rehashing will never be done. But by keeping it higher increases the time complexity of iteration. So it should be chosen very cleverly to increase performance. The expected number of values should be taken into account to set the initial capacity. The most generally preferred load factor value is 0.75 which provides a good deal between time and space costs. The load factor's value varies between 0 and 1.
Note: From Java 8 onward, Java has started using Self Balancing BST instead of a linked list for chaining. The advantage of self-balancing bst is, we get the worst case (when every key maps to the same slot) search time is O(Log n).
Synchronized HashMap
As it is told that HashMap is unsynchronized i.e. multiple threads can access it simultaneously. If multiple threads access this class simultaneously and at least one thread manipulates it structurally then it is necessary to make it synchronized externally. It is done by synchronizing some object which encapsulates the map. If No such object exists then it can be wrapped around Collections.synchronizedMap() to make HashMap synchronized and avoid accidental unsynchronized access. As in the following example:
Map m = Collections.synchronizedMap(new HashMap(...));
Now the Map m is synchronized. Iterators of this class are fail-fast if any structure modification is done after the creation of the iterator, in any way except through the iterator's remove method. In a failure of an iterator, it will throw ConcurrentModificationException.
HashMap is mainly the implementation of hashing. It is useful when we need efficient implementation of search, insert and delete operations. Please refer to the applications of hashing for details.
Methods in HashMap
- K – The type of the keys in the map.
- V – The type of values mapped in the map.
Method | Description |
---|
clear() | Removes all of the mappings from this map. |
clone() | Returns a shallow copy of this HashMap instance: the keys and values themselves are not cloned. |
compute(K key, BiFunction<? super K,? super V,? extends V> remappingFunction) | Attempts to compute a mapping for the specified key and its current mapped value (or null if there is no current mapping). |
computeIfAbsent(K key, Function<?super K,? extends V> mappingFunction) | If the specified key is not already associated with a value (or is mapped to null), attempts to compute its value using the given mapping function and enters it into this map unless null. |
computeIfPresent(K key, BiFunction<? super K,? super V,? extends V> remappingFunction) | If the value for the specified key is present and non-null, attempts to compute a new mapping given the key and its current mapped value. |
containsKey(Object key) | Returns true if this map contains a mapping for the specified key. |
containsValue(Object value) | Returns true if this map maps one or more keys to the specified value. |
entrySet() | Returns a Set view of the mappings contained in this map. |
get(Object key) | Returns the value to which the specified key is mapped, or null if this map contains no mapping for the key. |
isEmpty() | Returns true if this map contains no key-value mappings. |
keySet() | Returns a Set view of the keys contained in this map. |
merge(K key, V value, BiFunction<? super V,? super V,? extends V> remappingFunction) | If the specified key is not already associated with a value or is associated with null, associate it with the given non-null value. |
put(K key, V value) | Associates the specified value with the specified key in this map. |
putAll(Map<? extends K,? extends V> m) | Copies all of the mappings from the specified map to this map. |
remove(Object key) | Removes the mapping for the specified key from this map if present. |
size() | Returns the number of key-value mappings in this map. |
values() | Returns a Collection view of the values contained in this map. |
Methods inherited from class java.util.AbstractMap
Method | Description |
---|
equals() | Compares the specified object with this map for equality. |
hashCode() | Returns the hash code value for this map. |
toString() | Returns a string representation of this map. |
Methods inherited from interface java.util.Map
Method | Description |
---|
equals() | Compares the specified object with this map for equality. |
forEach(BiConsumer<? super K, ? super V> action) | Performs the given action for each entry in this map until all entries have been processed or the action throws an exception. |
getOrDefault(Object key, V defaultValue) | Returns the value to which the specified key is mapped, or defaultValue if this map contains no mapping for the key. |
hashCode() | Returns the hash code value for this map. |
putIfAbsent(K key, V value) | If the specified key is not already associated with a value (or is mapped to null) associates it with the given value and returns null, else returns the current value. |
remove(Object key, Object value) | Removes the entry for the specified key only if it is currently mapped to the specified value. |
replace(K key, V value) | Replaces the entry for the specified key only if it is currently mapped to some value. |
replace(K key, V oldValue, V newValue) | Replaces the entry for the specified key only if currently mapped to the specified value. |
replaceAll(BiFunction<? super K,? super V,? extends V> function) | Replaces each entry's value with the result of invoking the given function on that entry until all entries have been processed or the function throws an exception. |
Advantages of HashMap
- Fast retrieval: HashMaps provide constant time access to elements, which means that retrieval and insertion of elements is very fast.
- Efficient storage: HashMaps use a hashing function to map keys to indices in an array. This allows for quick lookup of values based on keys, and efficient storage of data.
- Flexibility: HashMaps allow for null keys and values, and can store key-value pairs of any data type.
- Easy to use: HashMaps have a simple interface and can be easily implemented in Java.
- Suitable for large data sets: HashMaps can handle large data sets without slowing down.
Disadvantages of HashMap
- Unordered: HashMaps are not ordered, which means that the order in which elements are added to the map is not preserved.
- Not thread-safe: HashMaps are not thread-safe, which means that if multiple threads access the same hashmap simultaneously, it can lead to data inconsistencies.
- Performance can degrade: In some cases, if the hashing function is not properly implemented or if the load factor is too high, the performance of a HashMap can degrade.
- More complex than arrays or lists: HashMaps can be more complex to understand and use than simple arrays or lists, especially for beginners.
- Higher memory usage: Since HashMaps use an underlying array, they can use more memory than other data structures like arrays or lists. This can be a disadvantage if memory usage is a concern.
Similar Reads
Java Tutorial Java is a high-level, object-oriented programming language used to build web apps, mobile applications, and enterprise software systems. It is known for its Write Once, Run Anywhere capability, which means code written in Java can run on any device that supports the Java Virtual Machine (JVM).Java s
10 min read
Basics
Introduction to JavaJava is a high-level, object-oriented programming language developed by Sun Microsystems in 1995. It is platform-independent, which means we can write code once and run it anywhere using the Java Virtual Machine (JVM). Java is mostly used for building desktop applications, web applications, Android
4 min read
Java Programming BasicsJava is one of the most popular and widely used programming language and platform. A platform is an environment that helps to develop and run programs written in any programming language. Java is fast, reliable and secure. From desktop to web applications, scientific supercomputers to gaming console
4 min read
Java MethodsJava Methods are blocks of code that perform a specific task. A method allows us to reuse code, improving both efficiency and organization. All methods in Java must belong to a class. Methods are similar to functions and expose the behavior of objects.Example: Java program to demonstrate how to crea
7 min read
Access Modifiers in JavaIn Java, access modifiers are essential tools that define how the members of a class, like variables, methods, and even the class itself, can be accessed from other parts of our program. They are an important part of building secure and modular code when designing large applications. In this article
6 min read
Arrays in JavaIn Java, an array is an important linear data structure that allows us to store multiple values of the same type. Arrays in Java are objects, like all other objects in Java, arrays implicitly inherit from the java.lang.Object class. This allows you to invoke methods defined in Object (such as toStri
9 min read
Java StringsIn Java, a String is the type of object that can store a sequence of characters enclosed by double quotes and every character is stored in 16 bits, i.e., using UTF 16-bit encoding. A string acts the same as an array of characters. Java provides a robust and flexible API for handling strings, allowin
8 min read
Regular Expressions in JavaIn Java, Regular Expressions or Regex (in short) in Java is an API for defining String patterns that can be used for searching, manipulating, and editing a string in Java. Email validation and passwords are a few areas of strings where Regex is widely used to define the constraints. Regular Expressi
7 min read
OOPs & Interfaces
Classes and Objects in JavaIn Java, classes and objects are basic concepts of Object Oriented Programming (OOPs) that are used to represent real-world concepts and entities. A class is a template to create objects having similar properties and behavior, or in other words, we can say that a class is a blueprint for objects.An
10 min read
Java ConstructorsIn Java, constructors play an important role in object creation. A constructor is a special block of code that is called when an object is created. Its main job is to initialize the object, to set up its internal state, or to assign default values to its attributes. This process happens automaticall
10 min read
Java OOP(Object Oriented Programming) ConceptsBefore Object-Oriented Programming (OOPs), most programs used a procedural approach, where the focus was on writing step-by-step functions. This made it harder to manage and reuse code in large applications.To overcome these limitations, Object-Oriented Programming was introduced. Java is built arou
10 min read
Java PackagesPackages in Java are a mechanism that encapsulates a group of classes, sub-packages and interfaces. Packages are used for: Prevent naming conflicts by allowing classes with the same name to exist in different packages, like college.staff.cse.Employee and college.staff.ee.Employee.They make it easier
8 min read
Java InterfaceAn Interface in Java programming language is defined as an abstract type used to specify the behaviour of a class. An interface in Java is a blueprint of a behaviour. A Java interface contains static constants and abstract methods. Key Properties of Interface:The interface in Java is a mechanism to
11 min read
Collections
Exception Handling
Java Exception HandlingException handling in Java is an effective mechanism for managing runtime errors to ensure the application's regular flow is maintained. Some Common examples of exceptions include ClassNotFoundException, IOException, SQLException, RemoteException, etc. By handling these exceptions, Java enables deve
8 min read
Java Try Catch BlockA try-catch block in Java is a mechanism to handle exceptions. This make sure that the application continues to run even if an error occurs. The code inside the try block is executed, and if any exception occurs, it is then caught by the catch block.Example: Here, we are going to handle the Arithmet
4 min read
Java final, finally and finalizeIn Java, the final, finally, and finalize keywords play an important role in exception handling. The main difference between final, finally, and finalize is listed below:final: The final is the keyword that can be used for immutability and restrictions in variables, methods, and classes.finally: The
4 min read
Chained Exceptions in JavaChained Exceptions in Java allow associating one exception with another, i.e. one exception describes the cause of another exception. For example, consider a situation in which a method throws an ArithmeticException because of an attempt to divide by zero.But the root cause of the error was an I/O f
3 min read
Null Pointer Exception in JavaA NullPointerException in Java is a RuntimeException. It occurs when a program attempts to use an object reference that has the null value. In Java, "null" is a special value that can be assigned to object references to indicate the absence of a value.Reasons for Null Pointer ExceptionA NullPointerE
5 min read
Exception Handling with Method Overriding in JavaIn Java, an exception is an unwanted or unexpected event that occurs during a program's execution, i.e., at runtime, and disrupts the normal flow of the programâs instructions. Exception handling in Java handles runtime errors and helps maintain the program's normal flow by using constructs like try
5 min read
Java Advanced
Java Multithreading TutorialThreads are the backbone of multithreading. We are living in the real world which in itself is caught on the web surrounded by lots of applications. With the advancement in technologies, we cannot achieve the speed required to run them simultaneously unless we introduce the concept of multi-tasking
15+ min read
Synchronization in JavaIn multithreading, synchronization is important to make sure multiple threads safely work on shared resources. Without synchronization, data can become inconsistent or corrupted if multiple threads access and modify shared variables at the same time. In Java, it is a mechanism that ensures that only
10 min read
File Handling in JavaIn Java, with the help of File Class, we can work with files. This File Class is inside the java.io package. The File class can be used to create an object of the class and then specifying the name of the file.Why File Handling is Required?File Handling is an integral part of any programming languag
6 min read
Java Method ReferencesIn Java, a method is a collection of statements that perform some specific task and return the result to the caller. A method reference is the shorthand syntax for a lambda expression that contains just one method call. In general, one does not have to pass arguments to method references.Why Use Met
9 min read
Java 8 Stream TutorialJava 8 introduces Stream, which is a new abstract layer, and some new additional packages in Java 8 called java.util.stream. A Stream is a sequence of components that can be processed sequentially. These packages include classes, interfaces, and enum to allow functional-style operations on the eleme
15+ min read
Java NetworkingWhen computing devices such as laptops, desktops, servers, smartphones, and tablets and an eternally-expanding arrangement of IoT gadgets such as cameras, door locks, doorbells, refrigerators, audio/visual systems, thermostats, and various sensors are sharing information and data with each other is
15+ min read
JDBC TutorialJDBC stands for Java Database Connectivity. JDBC is a Java API or tool used in Java applications to interact with the database. It is a specification from Sun Microsystems that provides APIs for Java applications to communicate with different databases. Interfaces and Classes for JDBC API comes unde
12 min read
Java Memory ManagementJava memory management is the process by which the Java Virtual Machine (JVM) automatically handles the allocation and deallocation of memory. It uses a garbage collector to reclaim memory by removing unused objects, eliminating the need for manual memory managementJVM Memory StructureJVM defines va
4 min read
Garbage Collection in JavaGarbage collection in Java is an automatic memory management process that helps Java programs run efficiently. Java programs compile to bytecode that can be run on a Java Virtual Machine (JVM). When Java programs run on the JVM, objects in the heap are created, which is a portion of memory dedicated
7 min read
Memory Leaks in JavaIn programming, a memory leak happens when a program keeps using memory but does not give it back when it's done. It simply means the program slowly uses more and more memory, which can make things slow and even stop working. Working of Memory Management in JavaJava has automatic garbage collection,
3 min read
Practice Java
Java Interview Questions and AnswersJava is one of the most popular programming languages in the world, known for its versatility, portability, and wide range of applications. Java is the most used language in top companies such as Uber, Airbnb, Google, Netflix, Instagram, Spotify, Amazon, and many more because of its features and per
15+ min read
Java Programs - Java Programming ExamplesIn this article, we will learn and prepare for Interviews using Java Programming Examples. From basic Java programs like the Fibonacci series, Prime numbers, Factorial numbers, and Palindrome numbers to advanced Java programs.Java is one of the most popular programming languages today because of its
8 min read
Java Exercises - Basic to Advanced Java Practice Programs with SolutionsLooking for Java exercises to test your Java skills, then explore our topic-wise Java practice exercises? Here you will get 25 plus practice problems that help to upscale your Java skills. As we know Java is one of the most popular languages because of its robust and secure nature. But, programmers
7 min read
Java Quiz | Level Up Your Java SkillsThe best way to scale up your coding skills is by practicing the exercise. And if you are a Java programmer looking to test your Java skills and knowledge? Then, this Java quiz is designed to challenge your understanding of Java programming concepts and assess your excellence in the language. In thi
1 min read
Top 50 Java Project Ideas For Beginners and Advanced [Update 2025]Java is one of the most popular and versatile programming languages, known for its reliability, security, and platform independence. Developed by James Gosling in 1982, Java is widely used across industries like big data, mobile development, finance, and e-commerce.Building Java projects is an excel
15+ min read