Java Program For Reversing Alternate K Nodes In A Singly Linked List
Last Updated :
30 Aug, 2022
Given a linked list, write a function to reverse every alternate k nodes (where k is an input to the function) in an efficient way. Give the complexity of your algorithm.
Example:
Inputs: 1->2->3->4->5->6->7->8->9->NULL and k = 3
Output: 3->2->1->4->5->6->9->8->7->NULL.
Method 1 (Process 2k nodes and recursively call for rest of the list):
This method is basically an extension of the method discussed in this post.
kAltReverse(struct node *head, int k)
1) Reverse first k nodes.
2) In the modified list head points to the kth node. So change next
of head to (k+1)th node
3) Move the current pointer to skip next k nodes.
4) Call the kAltReverse() recursively for rest of the n - 2k nodes.
5) Return new head of the list.
Java
// Java program to reverse alternate k
// nodes in a linked list
class LinkedList
{
static Node head;
class Node
{
int data;
Node next;
Node(int d)
{
data = d;
next = null;
}
}
/* Reverses alternate k nodes and
returns the pointer to the new
head node */
Node kAltReverse(Node node, int k)
{
Node current = node;
Node next = null, prev = null;
int count = 0;
/ *1) reverse first k nodes of the
linked list */
while (current != null && count < k)
{
next = current.next;
current.next = prev;
prev = current;
current = next;
count++;
}
/* 2) Now head points to the kth node.
So change next of head to (k+1)th node*/
if (node != null)
{
node.next = current;
}
/* 3) We do not want to reverse next
k nodes. So move the current pointer
to skip next k nodes */
count = 0;
while (count < k - 1 &&
current != null)
{
current = current.next;
count++;
}
/* 4) Recursively call for the list starting
from current->next. And make rest of the
list as next of first node */
if (current != null)
{
current.next =
kAltReverse(current.next, k);
}
/* 5) prev is new head of the
input list */
return prev;
}
void printList(Node node)
{
while (node != null)
{
System.out.print(node.data + " ");
node = node.next;
}
}
void push(int newdata)
{
Node mynode = new Node(newdata);
mynode.next = head;
head = mynode;
}
public static void main(String[] args)
{
LinkedList list = new LinkedList();
// Creating the linkedlist
for (int i = 20; i > 0; i--)
{
list.push(i);
}
System.out.println("Given Linked List :");
list.printList(head);
head = list.kAltReverse(head, 3);
System.out.println("");
System.out.println("Modified Linked List :");
list.printList(head);
}
}
// This code is contributed by Mayank Jaiswal
Output:
Given linked list
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Modified Linked list
3 2 1 4 5 6 9 8 7 10 11 12 15 14 13 16 17 18 20 19
Time Complexity: O(n)
Method 2 (Process k nodes and recursively call for rest of the list):
The method 1 reverses the first k node and then moves the pointer to k nodes ahead. So method 1 uses two while loops and processes 2k nodes in one recursive call.
This method processes only k nodes in a recursive call. It uses a third bool parameter b which decides whether to reverse the k elements or simply move the pointer.
_kAltReverse(struct node *head, int k, bool b)
1) If b is true, then reverse first k nodes.
2) If b is false, then move the pointer k nodes ahead.
3) Call the kAltReverse() recursively for rest of the n - k nodes and link
rest of the modified list with end of first k nodes.
4) Return new head of the list.
Java
// Java program to reverse alternate
// k nodes in a linked list
class LinkedList
{
static Node head;
class Node
{
int data;
Node next;
Node(int d)
{
data = d;
next = null;
}
}
/* Alternatively reverses the given
linked list in groups of given
size k. */
Node kAltReverse(Node head, int k)
{
return _kAltReverse(head, k, true);
}
/* Helper function for kAltReverse().
It reverses k nodes of the list only
if the third parameter b is passed
as true, otherwise moves the pointer k
nodes ahead and recursively calls itself */
Node _kAltReverse(Node node,
int k, boolean b)
{
if (node == null)
{
return null;
}
int count = 1;
Node prev = null;
Node current = node;
Node next = null;
/* The loop serves two purposes
1) If b is true, then it reverses
the k nodes
2) If b is false, then it moves
the current pointer */
while (current != null && count <= k)
{
next = current.next;
/* Reverse the nodes only
if b is true*/
if (b == true)
{
current.next = prev;
}
prev = current;
current = next;
count++;
}
/* 3) If b is true, then node is the
kth node. So attach the rest of
the list after the node.
4) After attaching, return the new
head */
if (b == true)
{
node.next =
_kAltReverse(current, k, !b);
return prev;
}
/* If b is not true, then attach rest
of the list after prev. So attach rest
of the list after prev */
else
{
prev.next = _kAltReverse(current, k, !b);
return node;
}
}
void printList(Node node)
{
while (node != null)
{
System.out.print(node.data + " ");
node = node.next;
}
}
void push(int newdata)
{
Node mynode = new Node(newdata);
mynode.next = head;
head = mynode;
}
// Driver code
public static void main(String[] args)
{
LinkedList list = new LinkedList();
// Creating the linkedlist
for (int i = 20; i > 0; i--)
{
list.push(i);
}
System.out.println("Given Linked List :");
list.printList(head);
head = list.kAltReverse(head, 3);
System.out.println("");
System.out.println("Modified Linked List :");
list.printList(head);
}
}
// This code is contributed by Mayank Jaiswal
Output:
Given linked list
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Modified Linked list
3 2 1 4 5 6 9 8 7 10 11 12 15 14 13 16 17 18 20 19
Time Complexity: O(n)
Auxiliary Space: O(n) For call stack because it is using recursion
Please refer complete article on Reverse alternate K nodes in a Singly Linked List for more details!
Similar Reads
Java Tutorial Java is a high-level, object-oriented programming language used to build web apps, mobile applications, and enterprise software systems. It is known for its Write Once, Run Anywhere capability, which means code written in Java can run on any device that supports the Java Virtual Machine (JVM).Java s
10 min read
Java OOP(Object Oriented Programming) Concepts Java Object-Oriented Programming (OOPs) is a fundamental concept in Java that every developer must understand. It allows developers to structure code using classes and objects, making it more modular, reusable, and scalable.The core idea of OOPs is to bind data and the functions that operate on it,
13 min read
Java Interview Questions and Answers Java is one of the most popular programming languages in the world, known for its versatility, portability, and wide range of applications. Java is the most used language in top companies such as Uber, Airbnb, Google, Netflix, Instagram, Spotify, Amazon, and many more because of its features and per
15+ min read
Arrays in Java Arrays in Java are one of the most fundamental data structures that allow us to store multiple values of the same type in a single variable. They are useful for storing and managing collections of data. Arrays in Java are objects, which makes them work differently from arrays in C/C++ in terms of me
15+ min read
Collections in Java Any group of individual objects that are represented as a single unit is known as a Java Collection of Objects. In Java, a separate framework named the "Collection Framework" has been defined in JDK 1.2 which holds all the Java Collection Classes and Interface in it. In Java, the Collection interfac
15+ min read
Inheritance in Java Java Inheritance is a fundamental concept in OOP(Object-Oriented Programming). It is the mechanism in Java by which one class is allowed to inherit the features(fields and methods) of another class. In Java, Inheritance means creating new classes based on existing ones. A class that inherits from an
13 min read
Java Exception Handling Exception handling in Java allows developers to manage runtime errors effectively by using mechanisms like try-catch block, finally block, throwing Exceptions, Custom Exception handling, etc. An Exception is an unwanted or unexpected event that occurs during the execution of a program, i.e., at runt
10 min read
Java Programs - Java Programming Examples In this article, we will learn and prepare for Interviews using Java Programming Examples. From basic Java programs like the Fibonacci series, Prime numbers, Factorial numbers, and Palindrome numbers to advanced Java programs.Java is one of the most popular programming languages today because of its
8 min read
Java Interface An Interface in Java programming language is defined as an abstract type used to specify the behaviour of a class. An interface in Java is a blueprint of a behaviour. A Java interface contains static constants and abstract methods. Key Properties of Interface:The interface in Java is a mechanism to
12 min read
Introduction to Java Java is a high-level, object-oriented programming language developed by Sun Microsystems in 1995. It is platform-independent, which means we can write code once and run it anywhere using the Java Virtual Machine (JVM). Java is mostly used for building desktop applications, web applications, Android
4 min read