Java Program to Represent Linear Equations in Matrix Form
Last Updated :
12 Apr, 2023
Let's look at the System of Linear Equation with the help of an example:

The input of coefficients and variables is taken into play for consideration.
- The scanner package should be imported into the program in order to use the object of the Scanner class to take the input from the user.
- The array will be initialized to store the variables of the equations.
- The coefficients of the variables will be taken from the user with the help of the object of the Scanner class.
- The equations will then converted into the form of a matrix with the help of a loop.
Two examples are laid off:
- 3 variable linear equations in matrix form.
- N variable linear equations in matrix form.
Illustration: Considering the most used practical linear equation used in mathematics, that is 3 variable linear equations.
Input: ax + by + cz = d
Output - 1 2 3 x = 10
5 1 3 y = 12
7 4 2 z = 20
Example 1: Java Program for 3 variable linear equations in matrix form.
Java
// Java Program to Represent Linear Equations in Matrix Form
// Importing Scanner class
// to take input from user
import java.util.Scanner;
public class GFG {
// Mai driver method
public static void main(String args[])
{
// Display message for better readability
System.out.println(
"******** 3 variable linear equation ********");
// 3 variables of the linear equation
char[] variable = { 'x', 'y', 'z' };
// Creating Scanner class object
Scanner sc = new Scanner(System.in);
// Display message for asking user to enter input
System.out.println(
"Enter the coefficients of 3 variable");
System.out.println(
"Enter in the format shown below");
System.out.println("ax + by + cz = d");
// For 3*3 matrix or in other words
// Dealing with linear equations of 3 coefficients
// Input of coefficients from user
int[][] matrix = new int[3][3];
int[][] constt = new int[3][1];
// Outer loop for iterating rows
for (int i = 0; i < 3; i++) {
// Inner loop for iterating columns
for (int j = 0; j < 3; j++) {
// Reading values from usr and
// entering in the matrix form
matrix[i][j] = sc.nextInt();
}
// One row input is over by now
constt[i][0] = sc.nextInt();
}
// The linear equations in the form of matrix
// Display message
System.out.println(
"Matrix representation of above linear equations is: ");
// Outer loop for iterating rows
for (int i = 0; i < 3; i++) {
// Inner loop for iterating columns
for (int j = 0; j < 3; j++) {
// Printing matrix corresponding
// linear equation
System.out.print(" " + matrix[i][j]);
}
System.out.print(" " + variable[i]);
System.out.print(" = " + constt[i][0]);
System.out.println();
}
// Close the stream and release the resources
sc.close();
}
}
Output:

Now, getting it generic for any value of N: “n-variable linear equation”
Illustration:
Input: ax + by + cz + ... = d
Output: 1 2 3 x = 10
5 1 3 y = 12
7 4 2 z = 20
...
...
Example 2: Java Program for N variable linear equations in matrix form.
Java
import java.util.Scanner;
public class Linear_Equations_n {
public static void main(String args[])
{
System.out.println(
"******** n variable linear equation ********");
// Initializing the variables
char[] variable
= { 'a', 'b', 'c', 'x', 'y', 'z', 'w' };
System.out.println("Enter the number of variables");
Scanner sc = new Scanner(System.in);
int num = sc.nextInt();
System.out.println(
"Enter the coefficients variable");
System.out.println(
"Enter in the format shown below");
System.out.println("ax + by + cz + ... = d");
// Input of coefficients from user
int[][] matrix = new int[num][num];
int[][] constt = new int[num][1];
for (int i = 0; i < num; i++) {
for (int j = 0; j < num; j++) {
matrix[i][j] = sc.nextInt();
}
constt[i][0] = sc.nextInt();
}
// Representation of linear equations in form of
// matrix
System.out.println(
"Matrix representation of above linear equations is: ");
for (int i = 0; i < num; i++) {
for (int j = 0; j < num; j++) {
System.out.print(" " + matrix[i][j]);
}
System.out.print(" " + variable[i]);
System.out.print(" = " + constt[i][0]);
System.out.println();
}
sc.close();
}
}
Output -
4 - variable linear equations
5 - variable linear equations
Time Complexity: O(N2)
Auxiliary Space: O(N2)
The extra space is used to store the elements in the matrix.
Explore
Java Basics
OOP & Interfaces
Collections
Exception Handling
Java Advanced
Practice Java