Java Program to Find Independent Sets in a Graph By Graph Coloring
Last Updated :
23 Jul, 2025
Independent sets are set of vertices or edges in which the pair of any two vertices or edges are not adjacent to each other. Assuming that Independent sets mean Independent sets of vertices, we have to find a set of such vertices in which any two pairs of vertexes are not adjacent to each other. Using graph coloring we can solve this problem. We will modify the graph coloring method as instead of using different colors we will only use two colors i.e 0,1. So we will assume that those vertices which are labeled 0 are a part of the set and others are not. So the vertices labeled with 0 don't have any adjacent vertex labeled with 0.
Approach:
The basic idea about the functioning of call by references in java and concepts of the vector is a must. Also, we are assuming the index labeled as the vertex name and the value in the vector at that index as the color of that vertex (either 0 or 1). The initially found variable is set to false i.e no set of the desired size is found. We will be making use of the word removed and the color '0' for any vertex. Both indicate the same thing that the particular vertex can be removed from the graph and can be included in the set.
Procedure:
It is illustrated along with the help of methods that are used in the program are explained for understanding purposes sequentially as follows:
- The input of the program is an adjacent matrix of the graph and the max size of a set is given here. First, we have to make the adjacency list of the graph matrix. Now we will be running a loop for each vertex, by first giving the ith vertex color '0' and then finding all other possible vertices which can be given color '0'(included in the set).
- So we are making a vector named 'color' and initialize the vector with the color of all index (vertices) as '1' and the ith vertex as '0'. Then we will be checking for all the possible vertices that can be given the color '0' (included in the set) using a Util() method, described below.
- Util() method calls other two method named can_remove() and remove_all(). The main aim of this method is to remove all those vertices which can be removed from the color vector if the 'ith' vertex is removed(assigned '0'). This method finds the index of the vertex that can be removed using the above two methods. Then it assigns '0' to that vertex, and it continues doing this till there is no more vertex left to be removed. It returns the modified color vector.
- can_remove() method checks for whether the given vertex can be assigned '0' without any difficulty. It compares each neighbor vertex for the given vertex and checks whether there is any neighbor with '0' or not. If no vertex is there with such a case then this vertex is assigned a value '0'. It returns a bool value indicating yes or no.
- remove_all() method is used to find the vertex whose removal will give numerous vertices to be removed each time. This step is mainly a greedy approach. It finds the number of vertices that can be removed after the removal of a particular vertex and finds the max value of all those numbers and returns the index of that particular vertex whose removal will result in the removal of maximum vertices. Then this vertex is removed in Util() method.
- So till now we had understood what Util(), remove_all() and can_remove() method are doing. Basically for each 'i'th color vector with 'ith' vertex being '0', these methods try to find the number of vertices that can be removed from the graph (assigned '0'). so after calling this Util() method the color vector is being modified and the number of vertices that can be assigned '0' is given that value.
- Now since the color vector is modified, so we have to count the number of vertices that are assigned'0' (which means the vertices which can be included in the set). If the count is larger than the desired size then we have found the solution and found variable is set to true and output is done and loops break else it continues trying the next color vector with the next vertex being removed. The count is done by Util3() method.
- Still, we are missing out on edge case which is as shown in the following image. Here instead of coloring the second colored vertex in the first diagram, we will color one of its adjacent vertexes as shown in the second figure In doing so we will get many vertices in the set. Hence, for each color vector, we will call Util2() method. This case can arise only when there is a certain vertex which is having a value '1' (uncolored) and having only one colored adjacent vertex as shown above.
- *Util2() method basically checks for each vertex that is not removed (having '1'), whether that vertex is having only one adjacent vertex colored (value '1'). If found any such vertex then this method will swap the color among the vertices and recall the Util() method to refresh the color vector. This can be proved easily that this method will always either increase the number of the vertex with '0' or the number will remain the same. It will never decrease the count of colored vertices.

So this approach proves extra beneficial for our approach.
Note: Why it always increases?
There is only swap of color between two adjacent vertices. Hence, the count will remain same till now. Thinking for rest of the configuration we can say that before swap the newly colored vertex is not having more than one colored adjacent vertex. So after swap also there are no adjacent vertices to it that are colored. This will maintain the property of independent sets.
Implementation:
Till now if we have any solution then we will set found true otherwise will save the configuration of the color vector for further use. All this is done for each 'ith' vertex in the loop and the modified color vector is stored in the vector of vectors named set_found in the program.
If the desired size is not found till now, then we will try our last case that we will be performing pairwise intersection of all the generated sets of configurations.
In this, we will repeat the same procedure starting with the color vector again and maintaining the configurations generated. The only difference is that we will not begin by assigning '0' to the ith vertex. Instead of that, we will check pairs of configurations (in the set_found) for those vertexes that are labeled with '0' and are common to both sets. They will be labeled '0' in the color vector and the best part, the above procedure will be the same, to check the maximum size of the set possible and the above case.
Example
Java
// Java Program to Find Independent Sets in a Graph
// by Graph Coloring
// Importing input output classes
import java.io.*;
// Importing utility classes from java.util package
import java.util.*;
// Class 1
// Helper class
class GFGUTIL {
// Method 1
// Utility function to label maximum vertices with
// 0,that can be included in the set
public static void
Util(Vector<Vector<Integer> > adjacency_list,
Vector<Integer> color)
{
int a = 0;
// Condition check
while (a != -1) {
a = remove_all(adjacency_list, color);
if (a != -1)
color.set(a, 0);
}
}
// Method 2
// This method that tries whether it is possible to
// remove any adjacent vertex of any removed vertex
public static void
Util2(Vector<Vector<Integer> > adjacency_list,
Vector<Integer> color, int j)
{
int cnt = 0;
Vector<Integer> tmp_color = new Vector<Integer>();
for (int g = 0; g < color.size(); ++g)
tmp_color.add(color.get(g));
for (int i = 0; i < color.size(); ++i) {
if (tmp_color.get(i) == 1) {
int sum = 0;
int idx = -1;
for (int g = 0; g < adjacency_list.get(i).size(); ++g)
if (tmp_color.get(adjacency_list.get(i).get(g)) == 0) {
idx = g;
sum++;
}
if (sum == 1 && color.get(adjacency_list.get(i).get(idx))== 0) {
tmp_color.set(adjacency_list.get(i).get(idx), 1);
tmp_color.set(i, 0);
Util(adjacency_list, tmp_color);
++cnt;
}
if (cnt > j)
break;
}
}
for (int g = 0; g < color.size(); ++g)
color.set(g, tmp_color.get(g));
}
// Method 3
// Returning the number of vertices
// that can't be included in the set
public static int Util3(Vector<Integer> color)
{
int cnt = 0;
for (int i = 0; i < color.size(); i++)
if (color.get(i) == 1)
++cnt;
return cnt;
}
// Method 4
// Returning the index of the vertex
public static int
remove_all(Vector<Vector<Integer> > adjacency_list, Vector<Integer> color)
{
int a = -1, max = -1;
for (int i = 0; i < color.size(); ++i) {
if (color.get(i) == 1 && can_remove(adjacency_list.get(i), color) == 1) {
Vector<Integer> tmp_color = new Vector<Integer>();
for (int j = 0; j < color.size(); ++j)
tmp_color.add(color.get(j));
tmp_color.set(i, 0);
int sum = 0;
for (int j = 0; j < tmp_color.size(); ++j)
if (tmp_color.get(j) == 1 && can_remove(adjacency_list.get(j), tmp_color) == 1)
++sum;
if (sum > max) {
max = sum;
a = i;
}
}
}
// Index of the vertex
return a;
}
// Method 5
// To check whether a vertex can be removed or not
public static int can_remove(Vector<Integer> adj_list, Vector<Integer> color)
{
int check = 1;
for (int i = 0; i < adj_list.size(); ++i)
if (color.get(adj_list.get(i)) == 0)
check = 0;
return check;
}
}
// Class 2
// Main class
public class GFG {
// Main driver method
public static void main(String[] args) throws Exception
{
// inputting the graph and forming it's adjacency
// list.
// Display message for better readability
System.out.println("The number of vertices in the graph is taken as 4");
// Custom input is taken here
int n = 4;
// Creating a vector object for adjacency matrix.
Vector<Vector<Integer> > adjacency_matrix = new Vector<Vector<Integer> >(n, (n));
// Input matrix is
// 0111
// 1011
// 1101
// 1110
// Nested for loops for iterations
for (int i = 0; i < n; ++i) {
Vector<Integer> adj = new Vector<Integer>(n);
for (int j = 0; j < n; ++j)
if (i == j)
adj.add(0);
else
adj.add(1);
adjacency_matrix.add(adj);
}
// Creating a vector object for adjacency list
Vector<Vector<Integer> > adjacency_list
= new Vector<Vector<Integer> >();
// Nested for loops for iterations
for (int i = 0; i < n; ++i) {
Vector<Integer> adj_list = new Vector<Integer>();
for (int j = 0; j < n; ++j) {
if (adjacency_matrix.get(i).get(j) == 1)
adj_list.add(j);
}
adjacency_list.add(adj_list);
}
// Display message only for
// taking the minimum size of the set required.
System.out.println("The minimum size of the set required is taken as 2");
// Declaring and initializing variable with
// least size of the set required
int x = 2;
// Complement of the size
int y = n - x;
int found = 0;
int size = 0;
int min = n + 1;
// Creating a set found vector to
// store all the possible set
Vector<Vector<Integer> > set_found = new Vector<Vector<Integer> >();
// Display message
System.out.println("Searching for the set");
for (int i = 0; i < n; ++i) {
// If set is found
if (found == 1)
// Hault the further execution of Program
break;
// Cover vector to have the state of all the
// vertices initially
Vector<Integer> color = new Vector<Integer>(n);
for (int j = 0; j < n; ++j)
color.add(1);
// Starting by putting the ith node in set
color.set(i, 0);
// then finding all the nodes to be pushed
GFGUTIL.Util(adjacency_list, color);
// Finding the number of those which cannot be
// pushed in set
size = GFGUTIL.Util3(color);
if (size < min)
min = size;
// If the number of elements in set are more or
// equal
if (size <= y) {
// Print and display the size
System.out.println("Independent set of size " + (n - size) + "found");
for (int j = 0; j < n; ++j)
if (color.get(j) == 0)
System.out.print(j + 1 + " ");
System.out.println();
set_found.add(color);
// Set flag to 1
found = 1;
// Hault the further execution of Program
break;
}
// If sufficient nodes are not found then
// we call util2 function
for (int j = 0; j < x; ++j)
GFGUTIL.Util2(adjacency_list, color, j);
size = GFGUTIL.Util3(color);
if (size < min)
min = size;
System.out.println("Independent set of size " + (n - size) + "found");
for (int j = 0; j < n; ++j)
if (color.get(j) == 0)
System.out.print(j + 1 + " ");
System.out.println();
set_found.add(color);
if (size <= y) {
found = 1;
break;
}
}
int r = set_found.size();
// Now searching pairwise and
// repeating same procedure as above discussed
for (int a = 0; a < r; ++a) {
if (found == 1)
break;
for (int b = a + 1; b < r; ++b) {
if (found == 1)
break;
Vector<Integer> color = new Vector<Integer>(n);
for (int j = 0; j < n; ++j)
color.add(1);
for (int c = 0; c < n; ++c)
if (set_found.get(a).get(c) == 0
&& set_found.get(b).get(c) == 0)
color.set(c, 0);
GFGUTIL.Util(adjacency_list, color);
size = GFGUTIL.Util3(color);
if (size < min)
min = size;
if (size <= y) {
System.out.println("Independent set of size" + (n - size));
for (int j = 0; j < n; ++j)
if (color.get(j) == 0)
System.out.print(j + 1 + " ");
System.out.println();
found = 1;
break;
}
for (int j = 0; j < y; ++j)
GFGUTIL.Util2(adjacency_list, color, j);
size = GFGUTIL.Util3(color);
if (size < min)
min = size;
System.out.println("Independent set of size " + (n - size) + "found");
for (int j = 0; j < n; ++j)
if (color.get(j) == 0)
System.out.print(j + 1 + " ");
System.out.println();
if (size <= y) {
found = 1;
break;
}
}
}
// If found
if (found == 1)
// Display command
System.out.println("Found the set of given least possible size");
else
// Display command
System.out.println("Couldn't find the set of least size given");
}
}
OutputThe number of vertices in the graph is taken as 4
The minimum size of the set required is taken as 2
Searching for the set
Independent set of size 1found
1
Independent set of size 1found
2
Independent set of size 1found
2
Independent set of size 1found
2
Independent set of size 1found
1
Independent set of size 1found
1
Independent set of size 1found
1
Independent set of size 1found
2
Independent set of size 1found
2
Independent set of size 1found
2
Couldn't find the set of least size given
Similar Reads
Java Tutorial Java is a high-level, object-oriented programming language used to build web apps, mobile applications, and enterprise software systems. Known for its Write Once, Run Anywhere capability, which means code written in Java can run on any device that supports the Java Virtual Machine (JVM).Syntax and s
10 min read
Basics
Introduction to JavaJava is a high-level, object-oriented programming language developed by Sun Microsystems in 1995. It is platform-independent, which means we can write code once and run it anywhere using the Java Virtual Machine (JVM). Java is mostly used for building desktop applications, web applications, Android
4 min read
Java Programming BasicsJava is one of the most popular and widely used programming language and platform. A platform is an environment that helps to develop and run programs written in any programming language. Java is fast, reliable and secure. From desktop to web applications, scientific supercomputers to gaming console
4 min read
Java MethodsJava Methods are blocks of code that perform a specific task. A method allows us to reuse code, improving both efficiency and organization. All methods in Java must belong to a class. Methods are similar to functions and expose the behavior of objects.Example: Java program to demonstrate how to crea
7 min read
Access Modifiers in JavaIn Java, access modifiers are essential tools that define how the members of a class, like variables, methods, and even the class itself, can be accessed from other parts of our program. They are an important part of building secure and modular code when designing large applications. In this article
6 min read
Arrays in JavaIn Java, an array is an important linear data structure that allows us to store multiple values of the same type. Arrays in Java are objects, like all other objects in Java, arrays implicitly inherit from the java.lang.Object class. This allows you to invoke methods defined in Object (such as toStri
9 min read
Java StringsIn Java, a String is the type of object that can store a sequence of characters enclosed by double quotes and every character is stored in 16 bits, i.e., using UTF 16-bit encoding. A string acts the same as an array of characters. Java provides a robust and flexible API for handling strings, allowin
8 min read
Regular Expressions in JavaIn Java, Regular Expressions or Regex (in short) in Java is an API for defining String patterns that can be used for searching, manipulating, and editing a string in Java. Email validation and passwords are a few areas of strings where Regex is widely used to define the constraints. Regular Expressi
7 min read
OOPs & Interfaces
Classes and Objects in JavaIn Java, classes and objects are basic concepts of Object Oriented Programming (OOPs) that are used to represent real-world concepts and entities. A class is a template to create objects having similar properties and behavior, or in other words, we can say that a class is a blueprint for objects.An
10 min read
Java ConstructorsIn Java, constructors play an important role in object creation. A constructor is a special block of code that is called when an object is created. Its main job is to initialize the object, to set up its internal state, or to assign default values to its attributes. This process happens automaticall
10 min read
Java OOP(Object Oriented Programming) ConceptsBefore Object-Oriented Programming (OOPs), most programs used a procedural approach, where the focus was on writing step-by-step functions. This made it harder to manage and reuse code in large applications.To overcome these limitations, Object-Oriented Programming was introduced. Java is built arou
10 min read
Java PackagesPackages in Java are a mechanism that encapsulates a group of classes, sub-packages and interfaces. Packages are used for: Prevent naming conflicts by allowing classes with the same name to exist in different packages, like college.staff.cse.Employee and college.staff.ee.Employee.They make it easier
8 min read
Java InterfaceAn Interface in Java programming language is defined as an abstract type used to specify the behaviour of a class. An interface in Java is a blueprint of a behaviour. A Java interface contains static constants and abstract methods. Key Properties of Interface:The interface in Java is a mechanism to
11 min read
Collections
Exception Handling
Java Exception HandlingException handling in Java is an effective mechanism for managing runtime errors to ensure the application's regular flow is maintained. Some Common examples of exceptions include ClassNotFoundException, IOException, SQLException, RemoteException, etc. By handling these exceptions, Java enables deve
8 min read
Java Try Catch BlockA try-catch block in Java is a mechanism to handle exceptions. This make sure that the application continues to run even if an error occurs. The code inside the try block is executed, and if any exception occurs, it is then caught by the catch block.Example: Here, we are going to handle the Arithmet
4 min read
Java final, finally and finalizeIn Java, the keywords "final", "finally" and "finalize" have distinct roles. final enforces immutability and prevents changes to variables, methods or classes. finally ensures a block of code runs after a try-catch, regardless of exceptions. finalize is a method used for cleanup before an object is
4 min read
Chained Exceptions in JavaChained Exceptions in Java allow associating one exception with another, i.e. one exception describes the cause of another exception. For example, consider a situation in which a method throws an ArithmeticException because of an attempt to divide by zero.But the root cause of the error was an I/O f
3 min read
Null Pointer Exception in JavaA NullPointerException in Java is a RuntimeException. It occurs when a program attempts to use an object reference that has the null value. In Java, "null" is a special value that can be assigned to object references to indicate the absence of a value.Reasons for Null Pointer ExceptionA NullPointerE
5 min read
Exception Handling with Method Overriding in JavaException handling with method overriding in Java refers to the rules and behavior that apply when a subclass overrides a method from its superclass and both methods involve exceptions. It ensures that the overridden method in the subclass does not declare broader or new checked exceptions than thos
4 min read
Java Advanced
Java Multithreading TutorialThreads are the backbone of multithreading. We are living in the real world which in itself is caught on the web surrounded by lots of applications. With the advancement in technologies, we cannot achieve the speed required to run them simultaneously unless we introduce the concept of multi-tasking
15+ min read
Synchronization in JavaIn multithreading, synchronization is important to make sure multiple threads safely work on shared resources. Without synchronization, data can become inconsistent or corrupted if multiple threads access and modify shared variables at the same time. In Java, it is a mechanism that ensures that only
10 min read
File Handling in JavaIn Java, with the help of File Class, we can work with files. This File Class is inside the java.io package. The File class can be used to create an object of the class and then specifying the name of the file.Why File Handling is Required?File Handling is an integral part of any programming languag
6 min read
Java Method ReferencesIn Java, a method is a collection of statements that perform some specific task and return the result to the caller. A method reference is the shorthand syntax for a lambda expression that contains just one method call. In general, one does not have to pass arguments to method references.Why Use Met
9 min read
Java 8 Stream TutorialJava 8 introduces Stream, which is a new abstract layer, and some new additional packages in Java 8 called java.util.stream. A Stream is a sequence of components that can be processed sequentially. These packages include classes, interfaces, and enum to allow functional-style operations on the eleme
15+ min read
Java NetworkingWhen computing devices such as laptops, desktops, servers, smartphones, and tablets and an eternally-expanding arrangement of IoT gadgets such as cameras, door locks, doorbells, refrigerators, audio/visual systems, thermostats, and various sensors are sharing information and data with each other is
15+ min read
JDBC TutorialJDBC stands for Java Database Connectivity. JDBC is a Java API or tool used in Java applications to interact with the database. It is a specification from Sun Microsystems that provides APIs for Java applications to communicate with different databases. Interfaces and Classes for JDBC API comes unde
12 min read
Java Memory ManagementJava memory management is the process by which the Java Virtual Machine (JVM) automatically handles the allocation and deallocation of memory. It uses a garbage collector to reclaim memory by removing unused objects, eliminating the need for manual memory managementJVM Memory StructureJVM defines va
4 min read
Garbage Collection in JavaGarbage collection in Java is an automatic memory management process that helps Java programs run efficiently. Java programs compile to bytecode that can be run on a Java Virtual Machine (JVM). When Java programs run on the JVM, objects in the heap are created, which is a portion of memory dedicated
7 min read
Memory Leaks in JavaIn programming, a memory leak happens when a program keeps using memory but does not give it back when it's done. It simply means the program slowly uses more and more memory, which can make things slow and even stop working. Working of Memory Management in JavaJava has automatic garbage collection,
3 min read
Practice Java
Java Interview Questions and AnswersJava is one of the most popular programming languages in the world, known for its versatility, portability, and wide range of applications. Java is the most used language in top companies such as Uber, Airbnb, Google, Netflix, Instagram, Spotify, Amazon, and many more because of its features and per
15+ min read
Java Programs - Java Programming ExamplesIn this article, we will learn and prepare for Interviews using Java Programming Examples. From basic Java programs like the Fibonacci series, Prime numbers, Factorial numbers, and Palindrome numbers to advanced Java programs.Java is one of the most popular programming languages today because of its
8 min read
Java Exercises - Basic to Advanced Java Practice Programs with SolutionsLooking for Java exercises to test your Java skills, then explore our topic-wise Java practice exercises? Here you will get 25 plus practice problems that help to upscale your Java skills. As we know Java is one of the most popular languages because of its robust and secure nature. But, programmers
7 min read
Java Quiz | Level Up Your Java SkillsThe best way to scale up your coding skills is by practicing the exercise. And if you are a Java programmer looking to test your Java skills and knowledge? Then, this Java quiz is designed to challenge your understanding of Java programming concepts and assess your excellence in the language. In thi
1 min read
Top 50 Java Project Ideas For Beginners and Advanced [Update 2025]Java is one of the most popular and versatile programming languages, known for its reliability, security, and platform independence. Developed by James Gosling in 1982, Java is widely used across industries like big data, mobile development, finance, and e-commerce.Building Java projects is an excel
15+ min read