Java Program for Longest Increasing Subsequence
Last Updated :
21 Oct, 2022
The Longest Increasing Subsequence (LIS) problem is to find the length of the longest subsequence of a given sequence such that all elements of the subsequence are sorted in increasing order. For example, the length of LIS for {10, 22, 9, 33, 21, 50, 41, 60, 80} is 6 and LIS is {10, 22, 33, 50, 60, 80}.
More Examples:
Input : arr[] = {3, 10, 2, 1, 20}
Output : Length of LIS = 3
The longest increasing subsequence is 3, 10, 20
Input : arr[] = {3, 2}
Output : Length of LIS = 1
The longest increasing subsequences are {3} and {2}
Input : arr[] = {50, 3, 10, 7, 40, 80}
Output : Length of LIS = 4
The longest increasing subsequence is {3, 7, 40, 80}
Optimal Substructure: Let arr[0..n-1] be the input array and L(i) be the length of the LIS ending at index i such that arr[i] is the last element of the LIS. Then, L(i) can be recursively written as: L(i) = 1 + max( L(j) ) where 0 < j < i and arr[j] < arr[i]; or L(i) = 1, if no such j exists. To find the LIS for a given array, we need to return max(L(i)) where 0 < i < n. Thus, we see the LIS problem satisfies the optimal substructure property as the main problem can be solved using solutions to subproblems. Following is a simple recursive implementation of the LIS problem. It follows the recursive structure discussed above.
Java
/* A Naive Java Program for LIS Implementation */
class LIS {
static int max_ref; // stores the LIS
/* To make use of recursive calls, this function must return
two things:
1) Length of LIS ending with element arr[n-1]. We use
max_ending_here for this purpose
2) Overall maximum as the LIS may end with an element
before arr[n-1] max_ref is used this purpose.
The value of LIS of full array of size n is stored in
*max_ref which is our final result */
static int _lis(int arr[], int n)
{
// base case
if (n == 1)
return 1;
// 'max_ending_here' is length of LIS ending with arr[n-1]
int res, max_ending_here = 1;
/* Recursively get all LIS ending with arr[0], arr[1] ...
arr[n-2]. If arr[i-1] is smaller than arr[n-1], and
max ending with arr[n-1] needs to be updated, then
update it */
for (int i = 1; i < n; i++) {
res = _lis(arr, i);
if (arr[i - 1] < arr[n - 1] && res + 1 > max_ending_here)
max_ending_here = res + 1;
}
// Compare max_ending_here with the overall max. And
// update the overall max if needed
if (max_ref < max_ending_here)
max_ref = max_ending_here;
// Return length of LIS ending with arr[n-1]
return max_ending_here;
}
// The wrapper function for _lis()
static int lis(int arr[], int n)
{
// The max variable holds the result
max_ref = 1;
// The function _lis() stores its result in max
_lis(arr, n);
// returns max
return max_ref;
}
// driver program to test above functions
public static void main(String args[])
{
int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };
int n = arr.length;
System.out.println("Length of lis is "
+ lis(arr, n) + "\n");
}
}
/*This code is contributed by Rajat Mishra*/
Output:Length of lis is 5
Time Complexity: O(2n)
Auxiliary Space: O(1)
Overlapping Subproblems: Considering the above implementation, following is recursion tree for an array of size 4. lis(n) gives us the length of LIS for arr[].
lis(4)
/ |
lis(3) lis(2) lis(1)
/ /
lis(2) lis(1) lis(1)
/
lis(1)
We can see that there are many subproblems which are solved again and again. So this problem has Overlapping Substructure property and recomputation of same subproblems can be avoided by either using Memoization or Tabulation. Following is a tabulated implementation for the LIS problem.
Java
/* Dynamic Programming Java implementation of LIS problem */
class LIS {
/* lis() returns the length of the longest increasing
subsequence in arr[] of size n */
static int lis(int arr[], int n)
{
int lis[] = new int[n];
int i, j, max = 0;
/* Initialize LIS values for all indexes */
for (i = 0; i < n; i++)
lis[i] = 1;
/* Compute optimized LIS values in bottom up manner */
for (i = 1; i < n; i++)
for (j = 0; j < i; j++)
if (arr[i] > arr[j] && lis[i] < lis[j] + 1)
lis[i] = lis[j] + 1;
/* Pick maximum of all LIS values */
for (i = 0; i < n; i++)
if (max < lis[i])
max = lis[i];
return max;
}
public static void main(String args[])
{
int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };
int n = arr.length;
System.out.println("Length of lis is " + lis(arr, n) + "\n");
}
}
/*This code is contributed by Rajat Mishra*/
Output:Length of lis is 5
Time Complexity: O(n2)
Auxiliary Space: O(n)
Please refer complete article on Dynamic Programming | Set 3 (Longest Increasing Subsequence) for more details!
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read