Java Program for Largest Sum Contiguous Subarray
Last Updated :
31 May, 2022
Write an efficient program to find the sum of contiguous subarray within a one-dimensional array of numbers that has the largest sum.

Kadane's Algorithm:
Initialize:
max_so_far = INT_MIN
max_ending_here = 0
Loop for each element of the array
(a) max_ending_here = max_ending_here + a[i]
(b) if(max_so_far < max_ending_here)
max_so_far = max_ending_here
(c) if(max_ending_here < 0)
max_ending_here = 0
return max_so_far
Explanation:
The simple idea of Kadane's algorithm is to look for all positive contiguous segments of the array (max_ending_here is used for this). And keep track of maximum sum contiguous segment among all positive segments (max_so_far is used for this). Each time we get a positive-sum compare it with max_so_far and update max_so_far if it is greater than max_so_far
Lets take the example:
{-2, -3, 4, -1, -2, 1, 5, -3}
max_so_far = max_ending_here = 0
for i=0, a[0] = -2
max_ending_here = max_ending_here + (-2)
Set max_ending_here = 0 because max_ending_here < 0
for i=1, a[1] = -3
max_ending_here = max_ending_here + (-3)
Set max_ending_here = 0 because max_ending_here < 0
for i=2, a[2] = 4
max_ending_here = max_ending_here + (4)
max_ending_here = 4
max_so_far is updated to 4 because max_ending_here greater
than max_so_far which was 0 till now
for i=3, a[3] = -1
max_ending_here = max_ending_here + (-1)
max_ending_here = 3
for i=4, a[4] = -2
max_ending_here = max_ending_here + (-2)
max_ending_here = 1
for i=5, a[5] = 1
max_ending_here = max_ending_here + (1)
max_ending_here = 2
for i=6, a[6] = 5
max_ending_here = max_ending_here + (5)
max_ending_here = 7
max_so_far is updated to 7 because max_ending_here is
greater than max_so_far
for i=7, a[7] = -3
max_ending_here = max_ending_here + (-3)
max_ending_here = 4
Program:
Java
import java.io.*;
// Java program to print largest contiguous array sum
import java.util.*;
class Kadane
{
public static void main (String[] args)
{
int [] a = {-2, -3, 4, -1, -2, 1, 5, -3};
System.out.println("Maximum contiguous sum is " +
maxSubArraySum(a));
}
static int maxSubArraySum(int a[])
{
int size = a.length;
int max_so_far = Integer.MIN_VALUE, max_ending_here = 0;
for (int i = 0; i < size; i++)
{
max_ending_here = max_ending_here + a[i];
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
if (max_ending_here < 0)
max_ending_here = 0;
}
return max_so_far;
}
}
Output:
Maximum contiguous sum is 7
Time Complexity: O(n)
Auxiliary Space: O(1)
Another approach:
Java
static int maxSubArraySum(int a[],int size)
{
int max_so_far = a[0], max_ending_here = 0;
for (int i = 0; i < size; i++)
{
max_ending_here = max_ending_here + a[i];
if (max_ending_here < 0)
max_ending_here = 0;
/* Do not compare for all
elements. Compare only
when max_ending_here > 0 */
else if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
}
return max_so_far;
}
// This code is contributed by ANKITRAI1
Time Complexity: O(n)
Auxiliary Space: O(1)
Algorithmic Paradigm: Dynamic Programming
Following is another simple implementation suggested by Mohit Kumar. The implementation handles the case when all numbers in the array are negative.
Java
// Java program to print largest contiguous
// array sum
import java.io.*;
class GFG {
static int maxSubArraySum(int a[], int size)
{
int max_so_far = a[0];
int curr_max = a[0];
for (int i = 1; i < size; i++)
{
curr_max = Math.max(a[i], curr_max+a[i]);
max_so_far = Math.max(max_so_far, curr_max);
}
return max_so_far;
}
/* Driver program to test maxSubArraySum */
public static void main(String[] args)
{
int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
int n = a.length;
int max_sum = maxSubArraySum(a, n);
System.out.println("Maximum contiguous sum is "
+ max_sum);
}
}
// This code is contributed by Prerna Saini
Output:
Maximum contiguous sum is 7
Time Complexity: O(n)
Auxiliary Space: O(1)
To print the subarray with the maximum sum, we maintain indices whenever we get the maximum sum.
Java
// Java program to print largest
// contiguous array sum
class GFG {
static void maxSubArraySum(int a[], int size)
{
int max_so_far = Integer.MIN_VALUE,
max_ending_here = 0,start = 0,
end = 0, s = 0;
for (int i = 0; i < size; i++)
{
max_ending_here += a[i];
if (max_so_far < max_ending_here)
{
max_so_far = max_ending_here;
start = s;
end = i;
}
if (max_ending_here < 0)
{
max_ending_here = 0;
s = i + 1;
}
}
System.out.println("Maximum contiguous sum is "
+ max_so_far);
System.out.println("Starting index " + start);
System.out.println("Ending index " + end);
}
// Driver code
public static void main(String[] args)
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = a.length;
maxSubArraySum(a, n);
}
}
// This code is contributed by prerna saini
Output:
Maximum contiguous sum is 7
Starting index 2
Ending index 6
Kadane's Algorithm can be viewed both as a greedy and DP. As we can see that we are keeping a running sum of integers and when it becomes less than 0, we reset it to 0 (Greedy Part). This is because continuing with a negative sum is way more worse than restarting with a new range. Now it can also be viewed as a DP, at each stage we have 2 choices: Either take the current element and continue with previous sum OR restart a new range. These both choices are being taken care of in the implementation.
Time Complexity: O(n)
Auxiliary Space: O(1)
Now try the below question
Given an array of integers (possibly some elements negative), write a C program to find out the *maximum product* possible by multiplying 'n' consecutive integers in the array where n ? ARRAY_SIZE. Also, print the starting point of the maximum product subarray.
Similar Reads
Java Program for Maximum sum rectangle in a 2D matrix | DP-27 Write a Java program for a given 2D array, the task is to find the maximum sum subarray in it. For example, in the following 2D array, the maximum sum subarray is highlighted with blue rectangle and sum of this subarray is 29. This problem is mainly an extension of the Largest Sum Contiguous Subarra
5 min read
Maximum sub-array sum after dividing array into sub-arrays based on the given queries Given an array arr[] and an integer k, we can cut this array at k different positions where k[] stores the positions of all the cuts required. The task is to print maximum sum among all the cuts after every cut made. Every cut is of the form of an integer x where x denotes a cut between arr[x] and a
9 min read
Java Program to Find the K-th Largest Sum Contiguous Subarray Given an array of integers. Write a program to find the K-th largest sum of contiguous subarray within the array of numbers which has negative and positive numbers. Examples: Input: a[] = {20, -5, -1} k = 3 Output: 14 Explanation: All sum of contiguous subarrays are (20, 15, 14, -5, -6, -1) so the 3
3 min read
Java Program for Maximum circular subarray sum Given n numbers (both +ve and -ve), arranged in a circle, find the maximum sum of consecutive numbers. Examples: Input: a[] = {8, -8, 9, -9, 10, -11, 12} Output: 22 (12 + 8 - 8 + 9 - 9 + 10) Input: a[] = {10, -3, -4, 7, 6, 5, -4, -1} Output: 23 (7 + 6 + 5 - 4 -1 + 10) Input: a[] = {-1, 40, -14, 7, 6
4 min read
Java Program for Queries to find maximum sum contiguous subarrays of given length in a rotating array Given an array arr[] of N integers and Q queries of the form {X, Y} of the following two types: If X = 1, rotate the given array to the left by Y positions.If X = 2, print the maximum sum subarray of length Y in the current state of the array. Examples:Â Input: N = 5, arr[] = {1, 2, 3, 4, 5}, Q = 2,
5 min read