Java Program For Deleting A Given Node In Linked List Under Given Constraints Last Updated : 22 Jun, 2022 Comments Improve Suggest changes Like Article Like Report Given a Singly Linked List, write a function to delete a given node. Your function must follow the following constraints: It must accept a pointer to the start node as the first parameter and node to be deleted as the second parameter i.e., a pointer to the head node is not global.It should not return a pointer to the head node.It should not accept pointer to pointer to the head node. You may assume that the Linked List never becomes empty.Let the function name be deleteNode(). In a straightforward implementation, the function needs to modify the head pointer when the node to be deleted is the first node. As discussed in previous post, when a function modifies the head pointer, the function must use one of the given approaches, we can't use any of those approaches here. Solution: We explicitly handle the case when the node to be deleted is the first node, we copy the data of the next node to head and delete the next node. The cases when a deleted node is not the head node can be handled normally by finding the previous node and changing the next of the previous node. The following are the implementation. Java // Java program to delete a given node // in linked list under given constraints class LinkedList { static Node head; static class Node { int data; Node next; Node(int d) { data = d; next = null; } } void deleteNode(Node node, Node n) { // When node to be deleted is // head node if (node == n) { if (node.next == null) { System.out.println("There is only one node. The list " + "can't be made empty "); return; } // Copy the data of next node to head node.data = node.next.data; // Store address of next node n = node.next; // Remove the link of next node node.next = node.next.next; // Free memory System.gc(); return; } // When not first node, follow the normal // deletion process find the previous node Node prev = node; while (prev.next != null && prev.next != n) { prev = prev.next; } // Check if node really exists in // Linked List if (prev.next == null) { System.out.println("Given node is not present in Linked List"); return; } // Remove node from Linked List prev.next = prev.next.next; // Free memory System.gc(); return; } /* Utility function to print a linked list */ void printList(Node head) { while (head != null) { System.out.print(head.data + " "); head = head.next; } System.out.println(""); } public static void main(String[] args) { LinkedList list = new LinkedList(); list.head = new Node(12); list.head.next = new Node(15); list.head.next.next = new Node(10); list.head.next.next.next = new Node(11); list.head.next.next.next.next = new Node(5); list.head.next.next.next.next.next = new Node(6); list.head.next.next.next.next.next.next = new Node(2); list.head.next.next.next.next.next.next.next = new Node(3); System.out.println("Given Linked List :"); list.printList(head); System.out.println(""); // Let us delete the node with value 10 System.out.println("Deleting node :" + head.next.next.data); list.deleteNode(head, head.next.next); System.out.println("Modified Linked list :"); list.printList(head); System.out.println(""); // Lets delete the first node System.out.println("Deleting first Node"); list.deleteNode(head, head); System.out.println("Modified Linked List"); list.printList(head); } } // this code has been contributed by Mayank Jaiswal Output: Given Linked List: 12 15 10 11 5 6 2 3 Deleting node 10: Modified Linked List: 12 15 11 5 6 2 3 Deleting first node Modified Linked List: 15 11 5 6 2 3 Time Complexity: O(n), where n represents the size of the given array.Auxiliary Space: O(1), no extra space is required, so it is a constant. Please refer complete article on Delete a given node in Linked List under given constraints for more details! Comment More infoAdvertise with us Next Article Java Program For Deleting A Given Node In Linked List Under Given Constraints kartik Follow Improve Article Tags : Linked List Java Programs C# DSA Linked Lists +1 More Practice Tags : Linked List Similar Reads DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on 7 min read Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s 12 min read Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge 14 min read Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir 8 min read Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st 2 min read Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta 15+ min read Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc 15 min read Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T 9 min read Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example 12 min read Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an 8 min read Like