Iterative diagonal traversal of binary tree
Last Updated :
26 Sep, 2024
Given a Binary Tree, the task is to print the diagonal traversal of the binary tree.
Note: If the diagonal element are present in two different subtrees, then left subtree diagonal element should be taken first and then right subtree.
Example:
Input:
Output: 8 10 14 3 6 7 13 1 4
Explanation: The above is the diagonal elements in a binary tree that belong to the same line.
[Expected Approach - 1] Using Queue with delimiter - O(n) Time and O(n) Space
The idea is to traverse the binary tree in level order manner using a queue. Push the root node and null pointer into the queue. For each node (starting from root), append its value to the resultant list. Push its left child node into queue if it exists, and set it to its right child node. If the current node is null, it means the starting of the next diagonal. So set the current node to the front node of the queue and pop from queue.
Below is the implementation of the above approach:
C++
// C++ program to print diagonal view
#include <bits/stdc++.h>
using namespace std;
class Node {
public:
int data;
Node *left, *right;
Node (int x) {
data = x;
left = nullptr;
right = nullptr;
}
};
// Iterative function to print diagonal view
vector<int> diagonal(Node* root) {
vector<int> ans;
// base case
if (root == nullptr)
return ans;
queue<Node*> q;
q.push(root);
q.push(nullptr);
while (!q.empty()) {
Node* curr = q.front();
q.pop();
// if current is delimiter then insert another
// null for next diagonal
if (curr == nullptr) {
// if tree has been traversed
if (q.empty()) break;
q.push(nullptr);
}
// Else print the current diagonal
else {
while (curr != nullptr) {
ans.push_back(curr->data);
// if left child is present
// push into queue
if (curr->left != nullptr)
q.push(curr->left);
// current equals to right child
curr = curr->right;
}
}
}
return ans;
}
void printList(vector<int> v) {
int n = v.size();
for (int i=0; i<n; i++) {
cout << v[i] << " ";
}
cout << endl;
}
int main() {
// Create a hard coded tree
// 8
// / \
// 3 10
// / / \
// 1 6 14
// / \ /
// 4 7 13
Node* root = new Node(8);
root->left = new Node(3);
root->right = new Node(10);
root->left->left = new Node(1);
root->right->left = new Node(6);
root->right->right = new Node(14);
root->right->right->left = new Node(13);
root->right->left->left = new Node(4);
root->right->left->right = new Node(7);
vector<int> ans = diagonal(root);
printList(ans);
}
Java
// Java Program to print diagonal view
import java.util.*;
class Node {
int data;
Node left, right;
Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
// Iterative function to print diagonal view
static ArrayList<Integer> diagonalPrint(Node root) {
ArrayList<Integer> ans = new ArrayList<>();
// base case
if (root == null)
return ans;
Queue<Node> q = new LinkedList<>();
q.add(root);
q.add(null);
while (!q.isEmpty()) {
Node curr = q.poll();
// if current is delimiter then insert another
// null for next diagonal
if (curr == null) {
// if tree has been traversed
if (q.isEmpty()) break;
q.add(null);
}
// Else print the current diagonal
else {
while (curr != null) {
ans.add(curr.data);
// if left child is present
// push into queue
if (curr.left != null)
q.add(curr.left);
// current equals to right child
curr = curr.right;
}
}
}
return ans;
}
static void printList(ArrayList<Integer> v) {
for (int i = 0; i < v.size(); i++) {
System.out.print(v.get(i) + " ");
}
System.out.println();
}
public static void main(String[] args) {
// Create a hard coded tree
// 8
// / \
// 3 10
// / / \
// 1 6 14
// / \ /
// 4 7 13
Node root = new Node(8);
root.left = new Node(3);
root.right = new Node(10);
root.left.left = new Node(1);
root.right.left = new Node(6);
root.right.right = new Node(14);
root.right.right.left = new Node(13);
root.right.left.left = new Node(4);
root.right.left.right = new Node(7);
ArrayList<Integer> ans = diagonalPrint(root);
printList(ans);
}
}
Python
# Python Program to print diagonal view
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
# Iterative function to print diagonal view
def diagonal_print(root):
ans = []
if root is None:
return ans
q = []
q.append(root)
q.append(None)
while len(q) > 0:
curr = q.pop(0)
# if current is delimiter then insert another
# null for next diagonal
if curr is None:
# if tree has been traversed
if len(q) == 0:
break
q.append(None)
# Else print the current diagonal
else:
while curr is not None:
ans.append(curr.data)
# if left child is present
# push into queue
if curr.left is not None:
q.append(curr.left)
# current equals to right child
curr = curr.right
return ans
def print_list(v):
for i in range(len(v)):
print(v[i], end=" ")
print()
if __name__ == "__main__":
# Create a hard coded tree
# 8
# / \
# 3 10
# / / \
# 1 6 14
# / \ /
# 4 7 13
root = Node(8)
root.left = Node(3)
root.right = Node(10)
root.left.left = Node(1)
root.right.left = Node(6)
root.right.right = Node(14)
root.right.right.left = Node(13)
root.right.left.left = Node(4)
root.right.left.right = Node(7)
ans = diagonal_print(root)
print_list(ans)
C#
// C# Program to print diagonal view
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
// Iterative function to print diagonal view
static List<int> DiagonalPrint(Node root) {
List<int> ans = new List<int>();
// base case
if (root == null)
return ans;
Queue<Node> q = new Queue<Node>();
q.Enqueue(root);
q.Enqueue(null);
while (q.Count > 0) {
Node curr = q.Dequeue();
// if current is delimiter then insert another
// null for next diagonal
if (curr == null) {
// if tree has been traversed
if (q.Count == 0) break;
q.Enqueue(null);
}
// Else print the current diagonal
else {
while (curr != null) {
ans.Add(curr.data);
// if left child is present
// push into queue
if (curr.left != null)
q.Enqueue(curr.left);
// current equals to right child
curr = curr.right;
}
}
}
return ans;
}
static void PrintList(List<int> v) {
for (int i = 0; i < v.Count; i++) {
Console.Write(v[i] + " ");
}
Console.WriteLine();
}
static void Main() {
// Create a hard coded tree
// 8
// / \
// 3 10
// / / \
// 1 6 14
// / \ /
// 4 7 13
Node root = new Node(8);
root.left = new Node(3);
root.right = new Node(10);
root.left.left = new Node(1);
root.right.left = new Node(6);
root.right.right = new Node(14);
root.right.right.left = new Node(13);
root.right.left.left = new Node(4);
root.right.left.right = new Node(7);
List<int> ans = DiagonalPrint(root);
PrintList(ans);
}
}
JavaScript
// JavaScript Program to print diagonal view
class Node {
constructor(x) {
this.key = x;
this.left = null;
this.right = null;
}
}
// Iterative function to print diagonal view
function diagonalPrint(root) {
let ans = [];
// base case
if (root === null)
return ans;
let q = [];
// push root
q.push(root);
// push delimiter
q.push(null);
while (q.length > 0) {
let curr = q.shift();
// if current is delimiter then insert another
// null for next diagonal
if (curr === null) {
// if tree has been traversed
if (q.length === 0) break;
q.push(null);
}
// Else print the current diagonal
else {
while (curr !== null) {
ans.push(curr.key);
// if left child is present
// push into queue
if (curr.left !== null)
q.push(curr.left);
// current equals to right child
curr = curr.right;
}
}
}
return ans;
}
function printList(v) {
for (let i = 0; i < v.length; i++) {
process.stdout.write(v[i] + " ");
}
console.log();
}
// Create a hard coded tree
// 8
// / \
// 3 10
// / / \
// 1 6 14
// / \ /
// 4 7 13
let root = new Node(8);
root.left = new Node(3);
root.right = new Node(10);
root.left.left = new Node(1);
root.right.left = new Node(6);
root.right.right = new Node(14);
root.right.right.left = new Node(13);
root.right.left.left = new Node(4);
root.right.left.right = new Node(7);
let ans = diagonalPrint(root);
printList(ans);
Output8 10 14 3 6 7 13 1 4
Time Complexity: O(n), where n is the total number of nodes in the binary tree.
Auxiliary Space: O(n)
[Expected Approach - 2] Using Queue without delimiter - O(n) Time and O(n) Space
The idea is similar to level order traversal, use a queue, but here delimiter is not used. Little modification is to be done.
- if(curr.left != null), then add it to the queue and move curr pointer to right of curr.
- if curr = null, then remove a node from queue.
Below is the implementation of the above approach:
C++
// C++ program to print diagonal view
#include <bits/stdc++.h>
using namespace std;
class Node {
public:
int data;
Node *left, *right;
Node (int x) {
data = x;
left = nullptr;
right = nullptr;
}
};
// Iterative function to print diagonal view
vector<int> diagonalPrint(Node* root) {
vector<int> ans;
// base case
if (root == nullptr)
return ans;
queue<Node*> q;
// push root
q.push(root);
while (!q.empty()) {
Node* curr = q.front();
q.pop();
while (curr != nullptr) {
ans.push_back(curr->data);
// if left child is present
// push into queue
if (curr->left != nullptr)
q.push(curr->left);
// current equals to right child
curr = curr->right;
}
}
return ans;
}
void printList(vector<int> v) {
int n = v.size();
for (int i=0; i<n; i++) {
cout << v[i] << " ";
}
cout << endl;
}
int main() {
// Create a hard coded tree
// 8
// / \
// 3 10
// / / \
// 1 6 14
// / \ /
// 4 7 13
Node* root = new Node(8);
root->left = new Node(3);
root->right = new Node(10);
root->left->left = new Node(1);
root->right->left = new Node(6);
root->right->right = new Node(14);
root->right->right->left = new Node(13);
root->right->left->left = new Node(4);
root->right->left->right = new Node(7);
vector<int> ans = diagonalPrint(root);
printList(ans);
}
Java
// Java Program to print diagonal view
import java.util.*;
class Node {
int data;
Node left, right;
Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
// Iterative function to print diagonal view
static ArrayList<Integer> diagonalPrint(Node root) {
ArrayList<Integer> ans = new ArrayList<>();
// base case
if (root == null)
return ans;
Queue<Node> q = new LinkedList<>();
// push root
q.add(root);
while (!q.isEmpty()) {
Node curr = q.poll();
while (curr != null) {
ans.add(curr.data);
// if left child is present
// push into queue
if (curr.left != null)
q.add(curr.left);
// current equals to right child
curr = curr.right;
}
}
return ans;
}
static void printList(ArrayList<Integer> v) {
for (int i = 0; i < v.size(); i++) {
System.out.print(v.get(i) + " ");
}
System.out.println();
}
public static void main(String[] args) {
// Create a hard coded tree
// 8
// / \
// 3 10
// / / \
// 1 6 14
// / \ /
// 4 7 13
Node root = new Node(8);
root.left = new Node(3);
root.right = new Node(10);
root.left.left = new Node(1);
root.right.left = new Node(6);
root.right.right = new Node(14);
root.right.right.left = new Node(13);
root.right.left.left = new Node(4);
root.right.left.right = new Node(7);
ArrayList<Integer> ans = diagonalPrint(root);
printList(ans);
}
}
Python
# Python Program to print diagonal view
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
# Iterative function to print diagonal view
def diagonal_print(root):
ans = []
# base case
if root is None:
return ans
q = []
# push root
q.append(root)
while len(q) > 0:
curr = q.pop(0)
while curr is not None:
ans.append(curr.data)
# if left child is present
# push into queue
if curr.left is not None:
q.append(curr.left)
# current equals to right child
curr = curr.right
return ans
def print_list(v):
for i in range(len(v)):
print(v[i], end=" ")
print()
if __name__ == "__main__":
# Create a hard coded tree
# 8
# / \
# 3 10
# / / \
# 1 6 14
# / \ /
# 4 7 13
root = Node(8)
root.left = Node(3)
root.right = Node(10)
root.left.left = Node(1)
root.right.left = Node(6)
root.right.right = Node(14)
root.right.right.left = Node(13)
root.right.left.left = Node(4)
root.right.left.right = Node(7)
ans = diagonal_print(root)
print_list(ans)
C#
// C# Program to print diagonal view
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
// Iterative function to print diagonal view
static List<int> DiagonalPrint(Node root) {
List<int> ans = new List<int>();
// base case
if (root == null)
return ans;
Queue<Node> q = new Queue<Node>();
// push root
q.Enqueue(root);
while (q.Count > 0) {
Node curr = q.Dequeue();
while (curr != null) {
ans.Add(curr.data);
// if left child is present
// push into queue
if (curr.left != null)
q.Enqueue(curr.left);
// current equals to right child
curr = curr.right;
}
}
return ans;
}
static void PrintList(List<int> v) {
for (int i = 0; i < v.Count; i++) {
Console.Write(v[i] + " ");
}
Console.WriteLine();
}
static void Main() {
// Create a hard coded tree
// 8
// / \
// 3 10
// / / \
// 1 6 14
// / \ /
// 4 7 13
Node root = new Node(8);
root.left = new Node(3);
root.right = new Node(10);
root.left.left = new Node(1);
root.right.left = new Node(6);
root.right.right = new Node(14);
root.right.right.left = new Node(13);
root.right.left.left = new Node(4);
root.right.left.right = new Node(7);
List<int> ans = DiagonalPrint(root);
PrintList(ans);
}
}
JavaScript
// JavaScript Program to print diagonal view
class Node {
constructor(x) {
this.key = x;
this.left = null;
this.right = null;
}
}
// Iterative function to print diagonal view
function diagonalPrint(root) {
let ans = [];
// base case
if (root === null)
return ans;
let q = [];
// push root
q.push(root);
while (q.length > 0) {
let curr = q.shift();
while (curr !== null) {
ans.push(curr.key);
// if left child is present
// push into queue
if (curr.left !== null)
q.push(curr.left);
// current equals to right child
curr = curr.right;
}
}
return ans;
}
function printList(v) {
for (let i = 0; i < v.length; i++) {
process.stdout.write(v[i] + " ");
}
console.log();
}
// Create a hard coded tree
// 8
// / \
// 3 10
// / / \
// 1 6 14
// / \ /
// 4 7 13
let root = new Node(8);
root.left = new Node(3);
root.right = new Node(10);
root.left.left = new Node(1);
root.right.left = new Node(6);
root.right.right = new Node(14);
root.right.right.left = new Node(13);
root.right.left.left = new Node(4);
root.right.left.right = new Node(7);
let ans = diagonalPrint(root);
printList(ans);
Output8 10 14 3 6 7 13 1 4
Time Complexity: O(n), where n is the total number of nodes in the binary tree.
Auxiliary Space: O(n)
Related articles:
Iterative diagonal traversal of binary tree
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem