Intersection of two Sorted Linked Lists
Last Updated :
23 Jul, 2025
Given two lists sorted in increasing order, create and return a new list representing the intersection of the two lists. The new list should be made with its own memory — the original lists should not be changed.
Example:
Input:
First linked list: 1->2->3->4->6
Second linked list be 2->4->6->8,
Output: 2->4->6.
The elements 2, 4, 6 are common in
both the list so they appear in the
intersection list.
Input:
First linked list: 1->2->3->4->5
Second linked list be 2->3->4,
Output: 2->3->4
The elements 2, 3, 4 are common in
both the list so they appear in the
intersection list.
Method 1: Using Dummy Node.
Approach:
The idea is to use a temporary dummy node at the start of the result list. The pointer tail always points to the last node in the result list, so new nodes can be added easily. The dummy node initially gives the tail a memory space to point to. This dummy node is efficient, since it is only temporary, and it is allocated in the stack. The loop proceeds, removing one node from either 'a' or 'b' and adding it to the tail. When the given lists are traversed the result is in dummy. next, as the values are allocated from next node of the dummy. If both the elements are equal then remove both and insert the element to the tail. Else remove the smaller element among both the lists.
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
using namespace std;
/* Link list node */
struct Node {
int data;
Node* next;
};
void push(Node** head_ref, int new_data);
/*This solution uses the temporary
dummy to build up the result list */
Node* sortedIntersect(Node* a, Node* b)
{
Node dummy;
Node* tail = &dummy;
dummy.next = NULL;
/* Once one or the other
list runs out -- we're done */
while (a != NULL && b != NULL) {
if (a->data == b->data) {
push((&tail->next), a->data);
tail = tail->next;
a = a->next;
b = b->next;
}
/* advance the smaller list */
else if (a->data < b->data)
a = a->next;
else
b = b->next;
}
return (dummy.next);
}
/* UTILITY FUNCTIONS */
/* Function to insert a node at
the beginning of the linked list */
void push(Node** head_ref, int new_data)
{
/* allocate node */
Node* new_node = (Node*)malloc(
sizeof(Node));
/* put in the data */
new_node->data = new_data;
/* link the old list of the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
/* Function to print nodes in
a given linked list */
void printList(Node* node)
{
while (node != NULL) {
cout << node->data <<" ";
node = node->next;
}
}
/* Driver program to test above functions*/
int main()
{
/* Start with the empty lists */
Node* a = NULL;
Node* b = NULL;
Node* intersect = NULL;
/* Let us create the first sorted
linked list to test the functions
Created linked list will be
1->2->3->4->5->6 */
push(&a, 6);
push(&a, 5);
push(&a, 4);
push(&a, 3);
push(&a, 2);
push(&a, 1);
/* Let us create the second sorted linked list
Created linked list will be 2->4->6->8 */
push(&b, 8);
push(&b, 6);
push(&b, 4);
push(&b, 2);
/* Find the intersection two linked lists */
intersect = sortedIntersect(a, b);
cout<<"Linked list containing common items of a & b \n";
printList(intersect);
}
C
#include <stdio.h>
#include <stdlib.h>
/* Link list node */
struct Node {
int data;
struct Node* next;
};
void push(struct Node** head_ref, int new_data);
/*This solution uses the temporary
dummy to build up the result list */
struct Node* sortedIntersect(
struct Node* a,
struct Node* b)
{
struct Node dummy;
struct Node* tail = &dummy;
dummy.next = NULL;
/* Once one or the other
list runs out -- we're done */
while (a != NULL && b != NULL) {
if (a->data == b->data) {
push((&tail->next), a->data);
tail = tail->next;
a = a->next;
b = b->next;
}
/* advance the smaller list */
else if (a->data < b->data)
a = a->next;
else
b = b->next;
}
return (dummy.next);
}
/* UTILITY FUNCTIONS */
/* Function to insert a node at
the beginning of the linked list */
void push(struct Node** head_ref, int new_data)
{
/* allocate node */
struct Node* new_node = (struct Node*)malloc(
sizeof(struct Node));
/* put in the data */
new_node->data = new_data;
/* link the old list of the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
/* Function to print nodes in
a given linked list */
void printList(struct Node* node)
{
while (node != NULL) {
printf("%d ", node->data);
node = node->next;
}
}
/* Driver program to test above functions*/
int main()
{
/* Start with the empty lists */
struct Node* a = NULL;
struct Node* b = NULL;
struct Node* intersect = NULL;
/* Let us create the first sorted
linked list to test the functions
Created linked list will be
1->2->3->4->5->6 */
push(&a, 6);
push(&a, 5);
push(&a, 4);
push(&a, 3);
push(&a, 2);
push(&a, 1);
/* Let us create the second sorted linked list
Created linked list will be 2->4->6->8 */
push(&b, 8);
push(&b, 6);
push(&b, 4);
push(&b, 2);
/* Find the intersection two linked lists */
intersect = sortedIntersect(a, b);
printf("\n Linked list containing common items of a & b \n ");
printList(intersect);
getchar();
}
Java
import java.util.*;
import java.io.*;
public class GFG
{
// head nodes for pointing to 1st and 2nd linked lists
static Node a = null, b = null;
// dummy node for storing intersection
static Node dummy = null;
// tail node for keeping track of
// last node so that it makes easy for insertion
static Node tail = null;
// class - Node
static class Node {
int data;
Node next;
Node(int data) {
this.data = data;
next = null;
}
}
// function for printing the list
void printList(Node start) {
Node p = start;
while (p != null) {
System.out.print(p.data + " ");
p = p.next;
}
System.out.println();
}
// inserting elements into list
void push(int data) {
Node temp = new Node(data);
if(dummy == null) {
dummy = temp;
tail = temp;
}
else {
tail.next = temp;
tail = temp;
}
}
// function for finding intersection and adding it to dummy list
void sortedIntersect()
{
// pointers for iterating
Node p = a,q = b;
while(p != null && q != null)
{
if(p.data == q.data)
{
// add to dummy list
push(p.data);
p = p.next;
q = q.next;
}
else if(p.data < q.data)
p = p.next;
else
q= q.next;
}
}
// Driver code
public static void main(String args[])
{
GFG list = new GFG();
// creating first linked list
list.a = new Node(1);
list.a.next = new Node(2);
list.a.next.next = new Node(3);
list.a.next.next.next = new Node(4);
list.a.next.next.next.next = new Node(6);
// creating second linked list
list.b = new Node(2);
list.b.next = new Node(4);
list.b.next.next = new Node(6);
list.b.next.next.next = new Node(8);
// function call for intersection
list.sortedIntersect();
// print required intersection
System.out.println("Linked list containing common items of a & b");
list.printList(dummy);
}
}
// This code is contributed by Likhita AVL
Python3
''' Link list node '''
class Node:
def __init__(self):
self.data = 0
self.next = None
'''This solution uses the temporary
dummy to build up the result list '''
def sortedIntersect(a, b):
dummy = Node()
tail = dummy;
dummy.next = None;
''' Once one or the other
list runs out -- we're done '''
while (a != None and b != None):
if (a.data == b.data):
tail.next = push((tail.next), a.data);
tail = tail.next;
a = a.next;
b = b.next;
# advance the smaller list
elif(a.data < b.data):
a = a.next;
else:
b = b.next;
return (dummy.next);
''' UTILITY FUNCTIONS '''
''' Function to insert a node at
the beginning of the linked list '''
def push(head_ref, new_data):
''' allocate node '''
new_node = Node()
''' put in the data '''
new_node.data = new_data;
''' link the old list of the new node '''
new_node.next = (head_ref);
''' move the head to point to the new node '''
(head_ref) = new_node;
return head_ref
''' Function to print nodes in
a given linked list '''
def printList(node):
while (node != None):
print(node.data, end=' ')
node = node.next;
''' Driver code'''
if __name__=='__main__':
''' Start with the empty lists '''
a = None;
b = None;
intersect = None;
''' Let us create the first sorted
linked list to test the functions
Created linked list will be
1.2.3.4.5.6 '''
a = push(a, 6);
a = push(a, 5);
a = push(a, 4);
a = push(a, 3);
a = push(a, 2);
a = push(a, 1);
''' Let us create the second sorted linked list
Created linked list will be 2.4.6.8 '''
b = push(b, 8);
b = push(b, 6);
b = push(b, 4);
b = push(b, 2);
''' Find the intersection two linked lists '''
intersect = sortedIntersect(a, b);
print("Linked list containing common items of a & b ");
printList(intersect);
# This code is contributed by rutvik_56.
C#
using System;
public class GFG
{
// dummy node for storing intersection
static Node dummy = null;
// tail node for keeping track of
// last node so that it makes easy for insertion
static Node tail = null;
// class - Node
public class Node
{
public int data;
public Node next;
public Node(int data)
{
this.data = data;
next = null;
}
}
// head nodes for pointing to 1st and 2nd linked lists
Node a = null, b = null;
// function for printing the list
void printList(Node start)
{
Node p = start;
while (p != null)
{
Console.Write(p.data + " ");
p = p.next;
}
Console.WriteLine();
}
// inserting elements into list
void push(int data)
{
Node temp = new Node(data);
if(dummy == null)
{
dummy = temp;
tail = temp;
}
else
{
tail.next = temp;
tail = temp;
}
}
// function for finding intersection and adding it to dummy list
void sortedIntersect()
{
// pointers for iterating
Node p = a,q = b;
while(p != null && q != null)
{
if(p.data == q.data)
{
// add to dummy list
push(p.data);
p = p.next;
q = q.next;
}
else if(p.data < q.data)
p = p.next;
else
q= q.next;
}
}
// Driver code
public static void Main(String []args)
{
GFG list = new GFG();
// creating first linked list
list.a = new Node(1);
list.a.next = new Node(2);
list.a.next.next = new Node(3);
list.a.next.next.next = new Node(4);
list.a.next.next.next.next = new Node(6);
// creating second linked list
list.b = new Node(2);
list.b.next = new Node(4);
list.b.next.next = new Node(6);
list.b.next.next.next = new Node(8);
// function call for intersection
list.sortedIntersect();
// print required intersection
Console.WriteLine("Linked list containing common items of a & b");
list.printList(dummy);
}
}
// This code is contributed by aashish1995
JavaScript
<script>
// head nodes for pointing to
// 1st and 2nd linked lists
var a = null, b = null;
// dummy node for storing intersection
var dummy = null;
// tail node for keeping track of
// last node so that it makes easy for insertion
var tail = null;
// class - Node
class Node {
constructor(val) {
this.data = val;
this.next = null;
}
}
// function for printing the list
function printList(start) {
var p = start;
while (p != null) {
document.write(p.data + " ");
p = p.next;
}
document.write();
}
// inserting elements into list
function push(data) {
var temp = new Node(data);
if (dummy == null) {
dummy = temp;
tail = temp;
} else {
tail.next = temp;
tail = temp;
}
}
// function for finding intersection and
// adding it to dummy list
function sortedIntersect() {
// pointers for iterating
var p = a, q = b;
while (p != null && q != null) {
if (p.data == q.data) {
// add to dummy list
push(p.data);
p = p.next;
q = q.next;
} else if (p.data < q.data)
p = p.next;
else
q = q.next;
}
}
// Driver code
// creating first linked list
a = new Node(1);
a.next = new Node(2);
a.next.next = new Node(3);
a.next.next.next = new Node(4);
a.next.next.next.next = new Node(6);
// creating second linked list
b = new Node(2);
b.next = new Node(4);
b.next.next = new Node(6);
b.next.next.next = new Node(8);
// function call for intersection
sortedIntersect();
// print required intersection
document.write(
"Linked list containing common items of a & b<br/>"
);
printList(dummy);
// This code is contributed by todaysgaurav
</script>
OutputLinked list containing common items of a & b
2 4 6
Complexity Analysis:
- Time Complexity: O(m+n) where m and n are number of nodes in first and second linked lists respectively.
Only one traversal of the lists are needed. - Auxiliary Space: O(min(m, n)).
The output list can store at most min(m,n) nodes .
Method 2: Using Local References.
Approach: This solution is structurally very similar to the above, but it avoids using a dummy node Instead, it maintains a struct node** pointer, lastPtrRef, that always points to the last pointer of the result list. This solves the same case that the dummy node did — dealing with the result list when it is empty. If the list is built at its tail, either the dummy node or the struct node** "reference" strategy can be used.
Below is the implementation of the above approach:
C++14
// C++ program to implement above approach
#include <bits/stdc++.h>
/* Link list node */
struct Node {
int data;
struct Node* next;
};
void push(struct Node** head_ref,
int new_data);
/* This solution uses the local reference */
struct Node* sortedIntersect(
struct Node* a,
struct Node* b)
{
struct Node* result = NULL;
struct Node** lastPtrRef = &result;
/* Advance comparing the first
nodes in both lists.
When one or the other list runs
out, we're done. */
while (a != NULL && b != NULL) {
if (a->data == b->data) {
/* found a node for the intersection */
push(lastPtrRef, a->data);
lastPtrRef = &((*lastPtrRef)->next);
a = a->next;
b = b->next;
}
else if (a->data < b->data)
a = a->next; /* advance the smaller list */
else
b = b->next;
}
return (result);
}
/* UTILITY FUNCTIONS */
/* Function to insert a node at the
beginning of the linked list */
void push(struct Node** head_ref,
int new_data)
{
/* allocate node */
struct Node* new_node = (struct Node*)malloc(
sizeof(struct Node));
/* put in the data */
new_node->data = new_data;
/* link the old list of the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
/* Function to print nodes in a given linked list */
void printList(struct Node* node)
{
while (node != NULL) {
printf("%d ", node->data);
node = node->next;
}
}
/* Driver program to test above functions*/
int main()
{
/* Start with the empty lists */
struct Node* a = NULL;
struct Node* b = NULL;
struct Node* intersect = NULL;
/* Let us create the first sorted
linked list to test the functions
Created linked list will be
1->2->3->4->5->6 */
push(&a, 6);
push(&a, 5);
push(&a, 4);
push(&a, 3);
push(&a, 2);
push(&a, 1);
/* Let us create the second sorted linked list
Created linked list will be 2->4->6->8 */
push(&b, 8);
push(&b, 6);
push(&b, 4);
push(&b, 2);
/* Find the intersection two linked lists */
intersect = sortedIntersect(a, b);
printf("\n Linked list containing common items of a & b \n ");
printList(intersect);
return 0;
}
//This code is contributed by Abhijeet Kumar(abhijeet19403)
C
#include <stdio.h>
#include <stdlib.h>
/* Link list node */
struct Node {
int data;
struct Node* next;
};
void push(struct Node** head_ref,
int new_data);
/* This solution uses the local reference */
struct Node* sortedIntersect(
struct Node* a,
struct Node* b)
{
struct Node* result = NULL;
struct Node** lastPtrRef = &result;
/* Advance comparing the first
nodes in both lists.
When one or the other list runs
out, we're done. */
while (a != NULL && b != NULL) {
if (a->data == b->data) {
/* found a node for the intersection */
push(lastPtrRef, a->data);
lastPtrRef = &((*lastPtrRef)->next);
a = a->next;
b = b->next;
}
else if (a->data < b->data)
a = a->next; /* advance the smaller list */
else
b = b->next;
}
return (result);
}
/* UTILITY FUNCTIONS */
/* Function to insert a node at the
beginning of the linked list */
void push(struct Node** head_ref,
int new_data)
{
/* allocate node */
struct Node* new_node = (struct Node*)malloc(
sizeof(struct Node));
/* put in the data */
new_node->data = new_data;
/* link the old list of the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
/* Function to print nodes in a given linked list */
void printList(struct Node* node)
{
while (node != NULL) {
printf("%d ", node->data);
node = node->next;
}
}
/* Driver program to test above functions*/
int main()
{
/* Start with the empty lists */
struct Node* a = NULL;
struct Node* b = NULL;
struct Node* intersect = NULL;
/* Let us create the first sorted
linked list to test the functions
Created linked list will be
1->2->3->4->5->6 */
push(&a, 6);
push(&a, 5);
push(&a, 4);
push(&a, 3);
push(&a, 2);
push(&a, 1);
/* Let us create the second sorted linked list
Created linked list will be 2->4->6->8 */
push(&b, 8);
push(&b, 6);
push(&b, 4);
push(&b, 2);
/* Find the intersection two linked lists */
intersect = sortedIntersect(a, b);
printf("\n Linked list containing common items of a & b \n ");
printList(intersect);
getchar();
}
Java
// Java program to implement above approach
import java.util.*;
import java.io.*;
public class GFG {
// Link list node
static class Node {
int data;
Node next;
Node(int d)
{
data = d;
next = null;
}
};
static Node sortedIntersect(Node a, Node b)
{
Node result = new Node(0);
Node curr = result;
/* Advance comparing the first
nodes in both lists.
When one or the other list runs
out, we're done. */
while (a != null && b != null) {
if (a.data == b.data) {
/* found a node for the intersection */
curr.next = new Node(a.data);
curr = curr.next;
a = a.next;
b = b.next;
}
else if (a.data < b.data)
a = a.next; /* advance the smaller list */
else
b = b.next;
}
result = result.next;
return result;
}
/* UTILITY FUNCTIONS */
/* Function to insert a node at
the beginning of the linked list */
static Node push(Node head_ref, int new_data)
{
/* Allocate node */
Node new_node = new Node(new_data);
/* Link the old list of the new node */
new_node.next = head_ref;
/* Move the head to point to the new node */
head_ref = new_node;
return head_ref;
}
/* Function to print nodes in
a given linked list */
static void printList(Node node)
{
while (node != null) {
System.out.print(node.data + " ");
node = node.next;
}
}
// Driver code
public static void main(String[] args)
{
/* Start with the empty lists */
Node a = null;
Node b = null;
Node intersect = null;
/* Let us create the first sorted
linked list to test the functions
Created linked list will be
1.2.3.4.5.6 */
a = push(a, 6);
a = push(a, 5);
a = push(a, 4);
a = push(a, 3);
a = push(a, 2);
a = push(a, 1);
/* Let us create the second sorted linked list
Created linked list will be 2.4.6.8 */
b = push(b, 8);
b = push(b, 6);
b = push(b, 4);
b = push(b, 2);
/* Find the intersection two linked lists */
intersect = sortedIntersect(a, b);
System.out.print("\n Linked list containing "
+ "common items of a & b \n ");
printList(intersect);
}
}
// This code is contributed by Abhijeet Kumar(abhijeet19403)
Python3
# Python3 program to implement above approach
# Link list node
class Node:
def __init__(self, d):
self.data = d
self.next = None
def sortedIntersect(a, b):
result = Node(0)
curr = result
# Advance comparing the first
# nodes in both lists.
# When one or the other list runs
# out, we're done.
while (a != None and b != None):
if (a.data == b.data):
# found a node for the intersection
curr.next = Node(a.data)
curr = curr.next
a = a.next
b = b.next
elif (a.data < b.data):
a = a.next # advance the smaller list
else:
b = b.next
result = result.next
return result
# UTILITY FUNCTIONS
# Function to insert a node at the beginning of the linked list
def push(head_ref, new_data):
# Allocate node
new_node = Node(new_data)
# Link the old list of the new node
new_node.next = head_ref
# Move the head to point to the new node
head_ref = new_node
return head_ref
# Function to print nodes in a given linked list
def printList(node):
while (node != None):
print(node.data, end=" ")
node = node.next
# Driver code
# Start with the empty lists
a = None
b = None
intersect = None
# Let us create the first sorted linked list to test the functions Created
# linked list will be 1.2.3.4.5.6
a = push(a, 6)
a = push(a, 5)
a = push(a, 4)
a = push(a, 3)
a = push(a, 2)
a = push(a, 1)
# Let us create the second sorted linked list Created linked list will be
# 2.4.6.8
b = push(b, 8)
b = push(b, 6)
b = push(b, 4)
b = push(b, 2)
# Find the intersection two linked lists
intersect = sortedIntersect(a, b)
print("Linked list containing " + "common items of a & b")
printList(intersect)
# This code is contributed by Abhijeet Kumar(abhijeet19403)
C#
// C# program to implement above approach
using System;
public class GFG {
// Link list node
public class Node {
public int data;
public Node next;
public Node(int d)
{
data = d;
next = null;
}
};
static Node sortedIntersect(Node a, Node b)
{
Node result = new Node(0);
Node curr = result;
/* Advance comparing the first
nodes in both lists.
When one or the other list runs
out, we're done. */
while (a != null && b != null) {
if (a.data == b.data) {
/* found a node for the intersection */
curr.next = new Node(a.data);
curr = curr.next;
a = a.next;
b = b.next;
}
else if (a.data < b.data)
a = a.next; /* advance the smaller list */
else
b = b.next;
}
result = result.next;
return result;
}
/* UTILITY FUNCTIONS */
/*
* Function to insert a node at the beginning of the
* linked list
*/
static Node push(Node head_ref, int new_data)
{
/* Allocate node */
Node new_node = new Node(new_data);
/* Link the old list of the new node */
new_node.next = head_ref;
/* Move the head to point to the new node */
head_ref = new_node;
return head_ref;
}
/*
* Function to print nodes in a given linked list
*/
static void printList(Node node)
{
while (node != null) {
Console.Write(node.data + " ");
node = node.next;
}
}
// Driver code
public static void Main(String[] args)
{
/* Start with the empty lists */
Node a = null;
Node b = null;
Node intersect = null;
/*
* Let us create the first sorted linked list to
* test the functions Created linked list will
* be 1.2.3.4.5.6
*/
a = push(a, 6);
a = push(a, 5);
a = push(a, 4);
a = push(a, 3);
a = push(a, 2);
a = push(a, 1);
/*
* Let us create the second sorted linked list
* Created linked list will be 2.4.6.8
*/
b = push(b, 8);
b = push(b, 6);
b = push(b, 4);
b = push(b, 2);
/* Find the intersection two linked lists */
intersect = sortedIntersect(a, b);
Console.Write("\n Linked list containing "
+ "common items of a & b \n ");
printList(intersect);
}
}
// This code is contributed by Abhijeet Kumar(abhijeet19403)
JavaScript
<script>
// Javascript program to implement above approach
// Link list node
class Node {
constructor(val) {
this.data = val;
this.next = null;
}
}
// Function to print nodes in a given linked list
function printList(node) {
while (node != null) {
document.write(node.data + " ");
node = node.next;
}
}
// UTILITY FUNCTION
// Function to insert a node at the beginning of the linked list
function push(head_ref, new_data) {
var new_node = new Node(new_data);
new_node.next = head_ref;
head_ref = new_node;
return head_ref;
}
// This solution uses the local reference
function sortedIntersect(a, b){
var result = new Node(0);
var lastptrRef = result;
// Advance comparing the first nodes in both lists.
// When one or the other list runs out, we're done
while(a != null && b != null){
if(a.data == b.data){
// found a node for the intersection
lastptrRef.next = new Node(a.data);
lastptrRef = lastptrRef.next;
a = a.next;
b = b.next;
}
else if(a.data < b.data)
a = a.next;
else
b = b.next;
}
result = result.next;
return result;
}
// Driver program to test above functions
// start with the empty lists
var a = null;
var b = null;
var intersect = null;
// let us create the first sorted linked list to test the functions
// Created linked list will be
// 1->2->3->4->5->6
a = push(a, 6);
a = push(a, 5);
a = push(a, 4);
a = push(a, 3);
a = push(a, 2);
a = push(a, 1);
// let us create the second sorted linked list
// Created linked list will be
// 2->4->6->8
b = push(b, 8);
b = push(b, 6);
b = push(b, 4);
b = push(b, 2);
// find the intersection two linked lists
intersect = sortedIntersect(a, b);
document.write("Linked list containing common items of a & b");
printList(intersect);
// This code is contributed by Yash Agarwal(yashagarwal2852002)
</script>
Output Linked list containing common items of a & b
2 4 6
Complexity Analysis:
- Time Complexity: O(m+n) where m and n are number of nodes in first and second linked lists respectively.
Only one traversal of the lists are needed. - Auxiliary Space: O(max(m, n)).
The output list can store at most m+n nodes.
Method 3: Recursive Solution.
Approach:
The recursive approach is very similar to the above two approaches. Build a recursive function that takes two nodes and returns a linked list node. Compare the first element of both the lists.
- If they are similar then call the recursive function with the next node of both the lists. Create a node with the data of the current node and put the returned node from the recursive function to the next pointer of the node created. Return the node created.
- If the values are not equal then remove the smaller node of both the lists and call the recursive function.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
// Link list node
struct Node
{
int data;
struct Node* next;
};
struct Node* sortedIntersect(struct Node* a,
struct Node* b)
{
// base case
if (a == NULL || b == NULL)
return NULL;
/* If both lists are non-empty */
/* Advance the smaller list and
call recursively */
if (a->data < b->data)
return sortedIntersect(a->next, b);
if (a->data > b->data)
return sortedIntersect(a, b->next);
// Below lines are executed only
// when a->data == b->data
struct Node* temp = (struct Node*)malloc(
sizeof(struct Node));
temp->data = a->data;
// Advance both lists and call recursively
temp->next = sortedIntersect(a->next,
b->next);
return temp;
}
/* UTILITY FUNCTIONS */
/* Function to insert a node at
the beginning of the linked list */
void push(struct Node** head_ref, int new_data)
{
/* Allocate node */
struct Node* new_node = (struct Node*)malloc(
sizeof(struct Node));
/* Put in the data */
new_node->data = new_data;
/* Link the old list of the new node */
new_node->next = (*head_ref);
/* Move the head to point to the new node */
(*head_ref) = new_node;
}
/* Function to print nodes in
a given linked list */
void printList(struct Node* node)
{
while (node != NULL)
{
cout << " " << node->data;
node = node->next;
}
}
// Driver code
int main()
{
/* Start with the empty lists */
struct Node* a = NULL;
struct Node* b = NULL;
struct Node* intersect = NULL;
/* Let us create the first sorted
linked list to test the functions
Created linked list will be
1->2->3->4->5->6 */
push(&a, 6);
push(&a, 5);
push(&a, 4);
push(&a, 3);
push(&a, 2);
push(&a, 1);
/* Let us create the second sorted linked list
Created linked list will be 2->4->6->8 */
push(&b, 8);
push(&b, 6);
push(&b, 4);
push(&b, 2);
/* Find the intersection two linked lists */
intersect = sortedIntersect(a, b);
cout << "\n Linked list containing "
<< "common items of a & b \n ";
printList(intersect);
return 0;
}
// This code is contributed by shivanisinghss2110
C
#include <stdio.h>
#include <stdlib.h>
/* Link list node */
struct Node {
int data;
struct Node* next;
};
struct Node* sortedIntersect(
struct Node* a,
struct Node* b)
{
/* base case */
if (a == NULL || b == NULL)
return NULL;
/* If both lists are non-empty */
/* advance the smaller list and call recursively */
if (a->data < b->data)
return sortedIntersect(a->next, b);
if (a->data > b->data)
return sortedIntersect(a, b->next);
// Below lines are executed only
// when a->data == b->data
struct Node* temp
= (struct Node*)malloc(
sizeof(struct Node));
temp->data = a->data;
/* advance both lists and call recursively */
temp->next = sortedIntersect(a->next, b->next);
return temp;
}
/* UTILITY FUNCTIONS */
/* Function to insert a node at
the beginning of the linked list */
void push(struct Node** head_ref, int new_data)
{
/* allocate node */
struct Node* new_node
= (struct Node*)malloc(
sizeof(struct Node));
/* put in the data */
new_node->data = new_data;
/* link the old list of the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
/* Function to print nodes in a given linked list */
void printList(struct Node* node)
{
while (node != NULL) {
printf("%d ", node->data);
node = node->next;
}
}
/* Driver program to test above functions*/
int main()
{
/* Start with the empty lists */
struct Node* a = NULL;
struct Node* b = NULL;
struct Node* intersect = NULL;
/* Let us create the first sorted
linked list to test the functions
Created linked list will be
1->2->3->4->5->6 */
push(&a, 6);
push(&a, 5);
push(&a, 4);
push(&a, 3);
push(&a, 2);
push(&a, 1);
/* Let us create the second sorted linked list
Created linked list will be 2->4->6->8 */
push(&b, 8);
push(&b, 6);
push(&b, 4);
push(&b, 2);
/* Find the intersection two linked lists */
intersect = sortedIntersect(a, b);
printf("\n Linked list containing common items of a & b \n ");
printList(intersect);
return 0;
}
Java
import java.util.*;
import java.io.*;
public class GFG{
// Link list node
static class Node
{
int data;
Node next;
};
static Node sortedIntersect(Node a,
Node b)
{
// base case
if (a == null || b == null)
return null;
/* If both lists are non-empty */
/* Advance the smaller list and
call recursively */
if (a.data < b.data)
return sortedIntersect(a.next, b);
if (a.data > b.data)
return sortedIntersect(a, b.next);
// Below lines are executed only
// when a.data == b.data
Node temp = new Node();
temp.data = a.data;
// Advance both lists and call recursively
temp.next = sortedIntersect(a.next,
b.next);
return temp;
}
/* UTILITY FUNCTIONS */
/* Function to insert a node at
the beginning of the linked list */
static Node push(Node head_ref, int new_data)
{
/* Allocate node */
Node new_node = new Node();
/* Put in the data */
new_node.data = new_data;
/* Link the old list of the new node */
new_node.next = head_ref;
/* Move the head to point to the new node */
head_ref = new_node;
return head_ref;
}
/* Function to print nodes in
a given linked list */
static void printList(Node node)
{
while (node != null)
{
System.out.print(" " + node.data);
node = node.next;
}
}
// Driver code
public static void main(String[] args)
{
/* Start with the empty lists */
Node a = null;
Node b = null;
Node intersect = null;
/* Let us create the first sorted
linked list to test the functions
Created linked list will be
1.2.3.4.5.6 */
a = push(a, 6);
a = push(a, 5);
a = push(a, 4);
a = push(a, 3);
a = push(a, 2);
a = push(a, 1);
/* Let us create the second sorted linked list
Created linked list will be 2.4.6.8 */
b = push(b, 8);
b = push(b, 6);
b = push(b, 4);
b = push(b, 2);
/* Find the intersection two linked lists */
intersect = sortedIntersect(a, b);
System.out.print("\n Linked list containing "
+ "common items of a & b \n ");
printList(intersect);
}
}
// This code is contributed by umadevi9616
Python3
# Link list node
class Node:
def __init__(self):
self.data = 0
self.next = None
def sortedIntersect(a, b):
# base case
if (a == None or b == None):
return None
# If both lists are non-empty
# Advance the smaller list and call recursively
if (a.data < b.data):
return sortedIntersect(a.next, b);
if (a.data > b.data):
return sortedIntersect(a, b.next);
# Below lines are executed only
# when a.data == b.data
temp = Node();
temp.data = a.data;
# Advance both lists and call recursively
temp.next = sortedIntersect(a.next, b.next);
return temp;
# UTILITY FUNCTIONS
# Function to insert a node at the beginning of the linked list
def push(head_ref, new_data):
# Allocate node
new_node = Node()
# Put in the data
new_node.data = new_data;
# Link the old list of the new node
new_node.next = head_ref;
# Move the head to point to the new node
head_ref = new_node;
return head_ref;
# Function to print nodes in a given linked list
def printList(node):
while (node != None):
print(node.data, end=" ")
node = node.next;
# Driver code
# Start with the empty lists
a = None
b = None
intersect = None
# Let us create the first sorted linked list to test the functions Created
# linked list will be 1.2.3.4.5.6
a = push(a, 6)
a = push(a, 5)
a = push(a, 4)
a = push(a, 3)
a = push(a, 2)
a = push(a, 1)
# Let us create the second sorted linked list Created linked list will be
# 2.4.6.8
b = push(b, 8)
b = push(b, 6)
b = push(b, 4)
b = push(b, 2)
# Find the intersection two linked lists
intersect = sortedIntersect(a, b)
print("\n Linked list containing " + "common items of a & b");
printList(intersect)
# This code is contributed by Saurabh Jaiswal
C#
using System;
public class GFG {
// Link list node
public class Node {
public int data;
public Node next;
};
static Node sortedIntersect(Node a, Node b) {
// base case
if (a == null || b == null)
return null;
/* If both lists are non-empty */
/*
* Advance the smaller list and call recursively
*/
if (a.data < b.data)
return sortedIntersect(a.next, b);
if (a.data > b.data)
return sortedIntersect(a, b.next);
// Below lines are executed only
// when a.data == b.data
Node temp = new Node();
temp.data = a.data;
// Advance both lists and call recursively
temp.next = sortedIntersect(a.next, b.next);
return temp;
}
/* UTILITY FUNCTIONS */
/*
* Function to insert a node at the beginning of the linked list
*/
static Node push(Node head_ref, int new_data) {
/* Allocate node */
Node new_node = new Node();
/* Put in the data */
new_node.data = new_data;
/* Link the old list of the new node */
new_node.next = head_ref;
/* Move the head to point to the new node */
head_ref = new_node;
return head_ref;
}
/*
* Function to print nodes in a given linked list
*/
static void printList(Node node) {
while (node != null) {
Console.Write(" " + node.data);
node = node.next;
}
}
// Driver code
public static void Main(String[] args) {
/* Start with the empty lists */
Node a = null;
Node b = null;
Node intersect = null;
/*
* Let us create the first sorted linked list to test the functions Created
* linked list will be 1.2.3.4.5.6
*/
a = push(a, 6);
a = push(a, 5);
a = push(a, 4);
a = push(a, 3);
a = push(a, 2);
a = push(a, 1);
/*
* Let us create the second sorted linked list Created linked list will be
* 2.4.6.8
*/
b = push(b, 8);
b = push(b, 6);
b = push(b, 4);
b = push(b, 2);
/* Find the intersection two linked lists */
intersect = sortedIntersect(a, b);
Console.Write("\n Linked list containing " + "common items of a & b \n ");
printList(intersect);
}
}
// This code is contributed by umadevi9616
JavaScript
<script>
// Link list node
class Node {
constructor(){
this.data = 0;
this.next = null;
}
}
function sortedIntersect(a, b) {
// base case
if (a == null || b == null)
return null;
/* If both lists are non-empty */
/*
* Advance the smaller list and call recursively
*/
if (a.data < b.data)
return sortedIntersect(a.next, b);
if (a.data > b.data)
return sortedIntersect(a, b.next);
// Below lines are executed only
// when a.data == b.data
var temp = new Node();
temp.data = a.data;
// Advance both lists and call recursively
temp.next = sortedIntersect(a.next, b.next);
return temp;
}
/* UTILITY FUNCTIONS */
/*
* Function to insert a node at the beginning of the linked list
*/
function push(head_ref , new_data) {
/* Allocate node */
var new_node = new Node();
/* Put in the data */
new_node.data = new_data;
/* Link the old list of the new node */
new_node.next = head_ref;
/* Move the head to point to the new node */
head_ref = new_node;
return head_ref;
}
/*
* Function to print nodes in a given linked list
*/
function printList(node) {
while (node != null) {
document.write(" " + node.data);
node = node.next;
}
}
// Driver code
/* Start with the empty lists */
var a = null;
var b = null;
var intersect = null;
/*
* Let us create the first sorted linked list to test the functions Created
* linked list will be 1.2.3.4.5.6
*/
a = push(a, 6);
a = push(a, 5);
a = push(a, 4);
a = push(a, 3);
a = push(a, 2);
a = push(a, 1);
/*
* Let us create the second sorted linked list Created linked list will be
* 2.4.6.8
*/
b = push(b, 8);
b = push(b, 6);
b = push(b, 4);
b = push(b, 2);
/* Find the intersection two linked lists */
intersect = sortedIntersect(a, b);
document.write("\n Linked list containing "
+ "common items of a & b <br/> ");
printList(intersect);
// This code is contributed by Rajput-Ji
</script>
Output Linked list containing common items of a & b
2 4 6
Complexity Analysis:
- Time Complexity: O(m+n) where m and n are number of nodes in first and second linked lists respectively.
Only one traversal of the lists are needed. - Auxiliary Space: O(max(m, n)).
The output list can store at most m+n nodes.
Method 4: Use Hashing
C++14
// C++ program to implement above approach
#include <bits/stdc++.h>
using namespace std;
// Link list node
struct Node {
int data;
struct Node* next;
};
void printList(struct Node* node)
{
while (node != NULL) {
cout << " " << node->data;
node = node->next;
}
}
void append(struct Node** head_ref, int new_data)
{
struct Node* new_node
= (struct Node*)malloc(sizeof(struct Node));
new_node->data = new_data;
new_node->next = (*head_ref);
(*head_ref) = new_node;
}
vector<int> intersection(struct Node* tmp1, struct Node* tmp2,
int k)
{
vector<int> res(k);
unordered_set<int> set;
while (tmp1 != NULL) {
set.insert(tmp1->data);
tmp1 = tmp1->next;
}
int cnt = 0;
while (tmp2 != NULL) {
if (set.find(tmp2->data) != set.end()) {
res[cnt] = tmp2->data;
cnt++;
}
tmp2 = tmp2->next;
}
return res;
}
// Driver code
int main()
{
struct Node* ll = NULL;
struct Node* ll1 = NULL;
append(&ll,7);
append(&ll,6);
append(&ll,5);
append(&ll,4);
append(&ll,3);
append(&ll,2);
append(&ll,1);
append(&ll,0);
append(&ll1,7);
append(&ll1,6);
append(&ll1,5);
append(&ll1,4);
append(&ll1,3);
append(&ll1,12);
append(&ll1,0);
append(&ll1,9);
vector<int> arr= intersection(ll, ll1, 6);
for (int i :arr)
cout << i << "\n";
return 0;
}
// This code is contributed by Abhijeet Kumar(abhijeet19403)
Java
import java.io.*;
import java.util.*;
public class LinkedList {
Node head;
static class Node {
int data;
Node next;
Node(int d)
{
data = d;
next = null;
}
}
public void printList()
{
Node n = head;
while (n != null) {
System.out.println(n.data + " ");
n = n.next;
}
}
public void append(int d)
{
Node n = new Node(d);
if (head == null) {
head = new Node(d);
return;
}
n.next = null;
Node last = head;
while (last.next != null) {
last = last.next;
}
last.next = n;
return;
}
static int[] intersection(Node tmp1, Node tmp2, int k)
{
int[] res = new int[k];
HashSet<Integer> set = new HashSet<Integer>();
while (tmp1 != null) {
set.add(tmp1.data);
tmp1 = tmp1.next;
}
int cnt = 0;
while (tmp2 != null) {
if (set.contains(tmp2.data)) {
res[cnt] = tmp2.data;
cnt++;
}
tmp2 = tmp2.next;
}
return res;
}
public static void main(String[] args)
{
LinkedList ll = new LinkedList();
LinkedList ll1 = new LinkedList();
ll.append(0);
ll.append(1);
ll.append(2);
ll.append(3);
ll.append(4);
ll.append(5);
ll.append(6);
ll.append(7);
ll1.append(9);
ll1.append(0);
ll1.append(12);
ll1.append(3);
ll1.append(4);
ll1.append(5);
ll1.append(6);
ll1.append(7);
int[] arr = intersection(ll.head, ll1.head, 6);
for (int i : arr) {
System.out.println(i);
}
}
}
// This code is contributed by ayyuce demirbas
Python3
# Python3 program to implement above approach
# Link list node
class Node:
def __init__(self):
self.data = 0
self.next = None
def printList(node):
while (node != None):
print(node.data, end=" ")
node = node.next;
def append(head_ref, new_data):
new_node = Node()
new_node.data = new_data;
new_node.next = head_ref;
head_ref = new_node;
return head_ref;
def intersection(tmp1,tmp2,k):
res = [0]*k
set1 = set()
while (tmp1 != None):
set1.add(tmp1.data)
tmp1 = tmp1.next
cnt = 0
while (tmp2 != None):
if tmp2.data in set1:
res[cnt] = tmp2.data;
cnt += 1
tmp2 = tmp2.next
return res
def printList(node):
while (node != None):
print(node.data, end=" ")
node = node.next;
# Driver code
# Start with the empty lists
ll = None
ll1 = None
ll = append(ll , 7)
ll = append(ll , 6)
ll = append(ll , 5)
ll = append(ll , 4)
ll = append(ll , 3)
ll = append(ll , 2)
ll = append(ll , 1)
ll = append(ll , 0)
ll1 = append(ll1 , 7)
ll1 = append(ll1 , 6)
ll1 = append(ll1 , 5)
ll1 = append(ll1 , 4)
ll1 = append(ll1 , 3)
ll1 = append(ll1 , 12)
ll1 = append(ll1 , 0)
ll1 = append(ll1 , 9)
arr = intersection(ll , ll1 , 6)
for i in range(6):
print(arr[i])
# This code is contributed by Abhijeet Kumar(abhijeet19403)
C#
using System;
using System.Collections.Generic;
// This code is contributed by ayyuce demirbas
public class List {
Node head;
public class Node {
public int data;
public Node next;
public Node(int d)
{
data = d;
next = null;
}
}
public void printList()
{
Node n = head;
while (n != null) {
Console.WriteLine(n.data + " ");
n = n.next;
}
}
public void append(int d)
{
Node n = new Node(d);
if (head == null) {
head = new Node(d);
return;
}
n.next = null;
Node last = head;
while (last.next != null) {
last = last.next;
}
last.next = n;
return;
}
static int[] intersection(Node tmp1, Node tmp2, int k)
{
int[] res = new int[k];
HashSet<int> set = new HashSet<int>();
while (tmp1 != null) {
set.Add(tmp1.data);
tmp1 = tmp1.next;
}
int cnt = 0;
while (tmp2 != null) {
if (set.Contains(tmp2.data)) {
res[cnt] = tmp2.data;
cnt++;
}
tmp2 = tmp2.next;
}
return res;
}
public static void Main(String[] args)
{
List ll = new List();
List ll1 = new List();
ll.append(0);
ll.append(1);
ll.append(2);
ll.append(3);
ll.append(4);
ll.append(5);
ll.append(6);
ll.append(7);
ll1.append(9);
ll1.append(0);
ll1.append(12);
ll1.append(3);
ll1.append(4);
ll1.append(5);
ll1.append(6);
ll1.append(7);
int[] arr = intersection(ll.head, ll1.head, 6);
foreach(int i in arr) { Console.WriteLine(i); }
}
}
// This code is contributed by umadevi9616
JavaScript
// JavaScript Program to implement above approach
// Link List Node
class Node{
constructor(data){
this.data = data;
this.next = null;
}
}
function printList(node){
while(node != null){
document.write(node.data + " ");
node = node.next;
}
}
function append(head_ref, new_data){
new_node = new Node();
new_node.data = new_data;
new_node.next = head_ref;
head_ref = new_node;
return head_ref;
}
function intersection(tmp1, tmp2, k){
let res = new Array(k);
let set = new Set();
while(tmp1 != null){
set.add(tmp1.data);
tmp1 = tmp1.next;
}
let cnt = 0;
while(tmp2 != null){
if(set.has(tmp2.data)){
res[cnt] = tmp2.data;
cnt++;
}
tmp2 = tmp2.next;
}
return res;
}
// Driver Code
let ll = null;
let ll1 = null;
ll = append(ll , 7)
ll = append(ll , 6)
ll = append(ll , 5)
ll = append(ll , 4)
ll = append(ll , 3)
ll = append(ll , 2)
ll = append(ll , 1)
ll = append(ll , 0)
ll1 = append(ll1 , 7)
ll1 = append(ll1 , 6)
ll1 = append(ll1 , 5)
ll1 = append(ll1 , 4)
ll1 = append(ll1 , 3)
ll1 = append(ll1 , 12)
ll1 = append(ll1 , 0)
ll1 = append(ll1 , 9)
let arr = intersection(ll, ll1, 6);
for(let i = 0; i<6; i++){
document.write(arr[i] + " ");
}
// This code is contributed by Yash Agarwal
Complexity Analysis:
- Time Complexity: O(n)
- Space complexity: O(n) since auxiliary space is being used
Please write comments if you find the above codes/algorithms incorrect, or find better ways to solve the same problem.
References:
cslibrary.stanford.edu/105/LinkedListProblems.pdf
Intersection of two sorted Linked lists | DSA Problem
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem