# python implementation of Grey wolf optimization (GWO)
# minimizing rastrigin and sphere function
import random
import math # cos() for Rastrigin
import copy # array-copying convenience
import sys # max float
#-------fitness functions---------
# rastrigin function
def fitness_rastrigin(position):
fitness_value = 0.0
for i in range(len(position)):
xi = position[i]
fitness_value += (xi * xi) - (10 * math.cos(2 * math.pi * xi)) + 10
return fitness_value
#sphere function
def fitness_sphere(position):
fitness_value = 0.0
for i in range(len(position)):
xi = position[i]
fitness_value += (xi*xi);
return fitness_value;
#-------------------------
# wolf class
class wolf:
def __init__(self, fitness, dim, minx, maxx, seed):
self.rnd = random.Random(seed)
self.position = [0.0 for i in range(dim)]
for i in range(dim):
self.position[i] = ((maxx - minx) * self.rnd.random() + minx)
self.fitness = fitness(self.position) # curr fitness
# grey wolf optimization (GWO)
def gwo(fitness, max_iter, n, dim, minx, maxx):
rnd = random.Random(0)
# create n random wolves
population = [ wolf(fitness, dim, minx, maxx, i) for i in range(n)]
# On the basis of fitness values of wolves
# sort the population in asc order
population = sorted(population, key = lambda temp: temp.fitness)
# best 3 solutions will be called as
# alpha, beta and gaama
alpha_wolf, beta_wolf, gamma_wolf = copy.copy(population[: 3])
# main loop of gwo
Iter = 0
while Iter < max_iter:
# after every 10 iterations
# print iteration number and best fitness value so far
if Iter % 10 == 0 and Iter > 1:
print("Iter = " + str(Iter) + " best fitness = %.3f" % alpha_wolf.fitness)
# linearly decreased from 2 to 0
a = 2*(1 - Iter/max_iter)
# updating each population member with the help of best three members
for i in range(n):
A1, A2, A3 = a * (2 * rnd.random() - 1), a * (
2 * rnd.random() - 1), a * (2 * rnd.random() - 1)
C1, C2, C3 = 2 * rnd.random(), 2*rnd.random(), 2*rnd.random()
X1 = [0.0 for i in range(dim)]
X2 = [0.0 for i in range(dim)]
X3 = [0.0 for i in range(dim)]
Xnew = [0.0 for i in range(dim)]
for j in range(dim):
X1[j] = alpha_wolf.position[j] - A1 * abs(
C1 * alpha_wolf.position[j] - population[i].position[j])
X2[j] = beta_wolf.position[j] - A2 * abs(
C2 * beta_wolf.position[j] - population[i].position[j])
X3[j] = gamma_wolf.position[j] - A3 * abs(
C3 * gamma_wolf.position[j] - population[i].position[j])
Xnew[j]+= X1[j] + X2[j] + X3[j]
for j in range(dim):
Xnew[j]/=3.0
# fitness calculation of new solution
fnew = fitness(Xnew)
# greedy selection
if fnew < population[i].fitness:
population[i].position = Xnew
population[i].fitness = fnew
# On the basis of fitness values of wolves
# sort the population in asc order
population = sorted(population, key = lambda temp: temp.fitness)
# best 3 solutions will be called as
# alpha, beta and gaama
alpha_wolf, beta_wolf, gamma_wolf = copy.copy(population[: 3])
Iter+= 1
# end-while
# returning the best solution
return alpha_wolf.position
#----------------------------
# Driver code for rastrigin function
print("\nBegin grey wolf optimization on rastrigin function\n")
dim = 3
fitness = fitness_rastrigin
print("Goal is to minimize Rastrigin's function in " + str(dim) + " variables")
print("Function has known min = 0.0 at (", end="")
for i in range(dim-1):
print("0, ", end="")
print("0)")
num_particles = 50
max_iter = 100
print("Setting num_particles = " + str(num_particles))
print("Setting max_iter = " + str(max_iter))
print("\nStarting GWO algorithm\n")
best_position = gwo(fitness, max_iter, num_particles, dim, -10.0, 10.0)
print("\nGWO completed\n")
print("\nBest solution found:")
print(["%.6f"%best_position[k] for k in range(dim)])
err = fitness(best_position)
print("fitness of best solution = %.6f" % err)
print("\nEnd GWO for rastrigin\n")
print()
print()
# Driver code for Sphere function
print("\nBegin grey wolf optimization on sphere function\n")
dim = 3
fitness = fitness_sphere
print("Goal is to minimize sphere function in " + str(dim) + " variables")
print("Function has known min = 0.0 at (", end="")
for i in range(dim-1):
print("0, ", end="")
print("0)")
num_particles = 50
max_iter = 100
print("Setting num_particles = " + str(num_particles))
print("Setting max_iter = " + str(max_iter))
print("\nStarting GWO algorithm\n")
best_position = gwo(fitness, max_iter, num_particles, dim, -10.0, 10.0)
print("\nGWO completed\n")
print("\nBest solution found:")
print(["%.6f"%best_position[k] for k in range(dim)])
err = fitness(best_position)
print("fitness of best solution = %.6f" % err)
print("\nEnd GWO for sphere\n")