How to plot a dashed line in matplotlib? Last Updated : 23 Jul, 2025 Comments Improve Suggest changes 3 Likes Like Report Matplotlib is used to create visualizations and plotting dashed lines is used to enhance the style and readability of graphs. A dashed line can represent trends, relationships or boundaries in data. Below we will explore how to plot and customize dashed lines using Matplotlib. To plot dashed line:Syntax: matplotlib.pyplot.plot(x, y, linestyle='dashed')where:x: X-axis points on the line.y: Y-axis points on the line.linestyle: Change the style of the line.1. Plotting a Basic Dashed LineThe simplest way to plot a dashed line in Matplotlib is by setting the linestyle parameter to 'dashed' or using the shorthand '--' Python import matplotlib.pyplot as plt x = [1.5, 2.6, 3.5, 4, 9] y = [3.25, 6.3, 4.23, 1.35, 3] plt.plot(x, y, linestyle='dashed') # or linestyle='--' plt.xlabel("X-axis") plt.ylabel("Y-axis") plt.show() Output Dashed line plot2. Customizing the Color of the Dashed LineYou can easily change the color of your dashed line to match your design or to make different lines distinguishable. Python import matplotlib.pyplot as plt x = [1.5, 2.6, 3.5, 4, 9] y = [3.25, 6.3, 4.23, 1.35, 3] plt.plot(x, y, linestyle='--', color='gold') plt.xlabel("X-axis") plt.ylabel("Y-axis") plt.show() Output Golden dashed line3. Adjusting the Width (Thickness) of the Dashed LineTo make the dashed line thicker or thinner, use the linewidth or lw parameter. Python import matplotlib.pyplot as plt x = [1.5, 5.6, 3.5, 4, 9] y1 = [1, 4, 3, 4, 5] y2 = [6, 7, 4, 9, 10] plt.plot(x, y1, linestyle='--', color='black', linewidth=1) # thinner line plt.plot(x, y2, linestyle='--', color='red', linewidth=4) # thicker line plt.show() OutputThin & thick dashes4. Creating Custom Dash PatternsIn addition to predefined styles, Matplotlib lets you create custom dash patterns using set_dashes() which takes a list of dash and gap lengths (in points) for greater control over line appearance. Python import matplotlib.pyplot as plt x = [1.5, 2.6, 3.5, 4, 9] y = [3.25, 6.3, 4.23, 1.35, 3] line, = plt.plot(x, y, color='blue') line.set_dashes([5, 10, 15, 5]) plt.show() Output Patterned dashed lineWith these customizations we can easily plot dashed lines in our graphs. Create Quiz Comment S skrg141 Follow 3 Improve S skrg141 Follow 3 Improve Article Tags : Python Python-matplotlib Explore Python FundamentalsPython Introduction 2 min read Input and Output in Python 4 min read Python Variables 4 min read Python Operators 4 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 5 min read Python Functions 5 min read Recursion in Python 4 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 4 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 3 min read Python MySQL 9 min read Python Packages 10 min read Python Modules 3 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 4 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 3 min read StatsModel Library - Tutorial 3 min read Learning Model Building in Scikit-learn 6 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 6 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 5 min read Build a REST API using Flask - Python 3 min read Building a Simple API with Django REST Framework 3 min read Python PracticePython Quiz 1 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like