Open In App

How to Make Arrays fit into Table in Python Pandas?

Last Updated : 03 Dec, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

To convert arrays into a table (DataFrame) in Python using the Pandas library, you can follow the steps depending on the structure of your array:

1. One-Dimensional Array

To convert a one-dimensional NumPy array into a DataFrame, use the pd.DataFrame() method and specify column names for better readability.

Python
import numpy as np
import pandas as pd

array = np.array([10, 20, 30, 40, 50])
df = pd.DataFrame(array, columns=['Values'])
print(df)

Output
   Values
0      10
1      20
2      30
3      40
4      50

2. Multi-Dimensional Array

For multi-dimensional arrays, you can convert them similarly by specifying column names corresponding to each dimension.

Python
import numpy as np
import pandas as pd
# Two-dimensional array
array_2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
df_2d = pd.DataFrame(array_2d, columns=['A', 'B', 'C'])
print(df_2d)

Output
   A  B  C
0  1  2  3
1  4  5  6
2  7  8  9

Converting Arrays to DataFrames : Important Considerations

  1. Array Lengths: Ensure all arrays have the same length before converting them into a DataFrame. If the lengths differ, you might encounter errors such as "Length of values does not match length of index" when trying to assign arrays to DataFrame columns. To handle this, you can preprocess arrays using pd.Series() which will fill in NaN for missing values.
  2. Column Names: Providing appropriate column names is crucial for readability and understanding of the DataFrame. You can specify column names when creating a DataFrame from an array using the columns parameter.
  3. Data Types: Pandas will infer data types from the arrays automatically. However, if specific data types are required, you can explicitly set them using the dtype parameter in the pd.DataFrame() function.

Example Code: Converting arrays into a Pandas DataFrame while considering these factors:

Python
import numpy as np
import pandas as pd

array1 = np.array([1, 2, 3])
array2 = np.array([4, 5, 6])

# Ensure arrays have the same length
if len(array1) != len(array2):
    raise ValueError("Arrays must have the same length")

# Create DataFrame with specified column names
df = pd.DataFrame({'Column1': array1, 'Column2': array2})

print(df)

Output
   Column1  Column2
0        1        4
1        2        5
2        3        6

Next Article
Practice Tags :

Similar Reads