How to get largest and smallest number in an Array?
Last Updated :
23 Jul, 2025
Given an array arr[] of length N, The task is to find the maximum and the minimum number in the array.
Examples:
Input: arr[] = {1, 2, 3, 4, 5}
Output: Maximum is: 5
Minimum is: 1
Explanation: The maximum of the array is 5
and the minimum of the array is 1.
Input: arr[] = {5, 3, 7, 4, 2}
Output: Maximum is: 7
Minimum is: 2
Approach 1(Greedy): The problem can be solved using the greedy approach:
The solution is to compare each array element for minimum and maximum elements by considering a single item at a time.
Follow the steps to solve the problem:
- Create a variable mini/maxi and initialize it with the value at index zero of the array.
- Iterate over the array and compare if the current element is greater than the maxi or less than the mini.
- Update the mini/maxi element with the current element so that the minimum/maximum element is stored in the mini/maxi variable.
- Return the mini/maxi variable.
Below is the implementation of the above idea:
C++
// C++ code to implement the idea
#include <bits/stdc++.h>
using namespace std;
// Function to find the minimum
// and maxximum of the array
pair<int, int> findMinMax(int arr[], int n)
{
int mini = arr[0];
int maxi = arr[0];
for (int i = 0; i < n; i++) {
if (arr[i] < mini) {
mini = arr[i];
}
else if (arr[i] > maxi) {
maxi = arr[i];
}
}
return { mini, maxi };
}
int main()
{
int arr[] = { 1, 2, 3, 4, 5 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function Call
pair<int, int> ans = findMinMax(arr, N);
cout << "Maximum is: " << ans.second << endl;
cout << "Minimum is: " << ans.first;
return 0;
}
Java
// Java Code to implement the above idea
class GFG {
// Function to find the minimum and maxximum of the
// array
static int[] findMinMax(int[] arr, int n)
{
int mini = arr[0];
int maxi = arr[0];
for (int i = 0; i < n; i++) {
if (arr[i] < mini) {
mini = arr[i];
}
else if (arr[i] > maxi) {
maxi = arr[i];
}
}
int[] ans = new int[2];
ans[0] = mini;
ans[1] = maxi;
return ans;
}
public static void main(String[] args)
{
int[] arr = { 1, 2, 3, 4, 5 };
int N = arr.length;
// Function call
int[] ans = findMinMax(arr, N);
System.out.print("Maximum is: " + ans[1]);
System.out.print("\n"
+ "Minimum is: " + ans[0]);
}
}
// This code is contributed by lokesh(lokeshmvs21).
Python3
# python3 code to implement the idea
# Function to find the minimum
# and maxximum of the array
def findMinMax(arr, n):
mini = arr[0]
maxi = arr[0]
for i in range(0, n):
if (arr[i] < mini):
mini = arr[i]
elif (arr[i] > maxi):
maxi = arr[i]
return [mini, maxi]
if __name__ == "__main__":
arr = [1, 2, 3, 4, 5]
N = len(arr)
# Function Call
ans = findMinMax(arr, N)
print(f"Maximum is: {ans[1]}")
print(f"Minimum is: {ans[0]}")
# This code is contributed by rakeshsahni
C#
// C# Code to implement the above idea
using System;
public class GFG {
// Function to find the minimum and maxximum of the
// array
static int[] findMinMax(int[] arr, int n)
{
int mini = arr[0];
int maxi = arr[0];
for (int i = 0; i < n; i++) {
if (arr[i] < mini) {
mini = arr[i];
}
else if (arr[i] > maxi) {
maxi = arr[i];
}
}
int[] ans = new int[2];
ans[0] = mini;
ans[1] = maxi;
return ans;
}
public static void Main(String[] args)
{
int[] arr = { 1, 2, 3, 4, 5 };
int N = arr.Length;
// Function call
int[] ans = findMinMax(arr, N);
Console.Write("Maximum is: " + ans[1]);
Console.Write("\n"
+ "Minimum is: " + ans[0]);
}
}
// This code is contributed by shikhasingrajput
JavaScript
<script>
// Javascript code to implement the idea
// Function to find the minimum
// and maxximum of the array
function findMinMax(arr,n)
{
let mini = arr[0];
let maxi = arr[0];
for (let i = 0; i < n; i++) {
if (arr[i] < mini) {
mini = arr[i];
}
else if (arr[i] > maxi) {
maxi = arr[i];
}
}
let ans = {
"first":mini,
"second":maxi
}
return ans;
}
let arr = [ 1, 2, 3, 4, 5 ];
let N = arr.length;
// Function Call
let ans = {};
ans = findMinMax(arr, N);
console.log("Maximum is: " + ans.second);
console.log("Minimum is: " + ans.first);
// This code is contributed by akashish__
</script>
OutputMaximum is: 5
Minimum is: 1
Time Complexity: O(N)
Auxiliary Space: O(1)
Approach 2(Library Function): The problem can be solved using the library functions provided in different programming languages.
We can use min_element() and max_element() to find the minimum and maximum elements of the array in C++.
Below is the implementation of the above idea:
C++
// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the minimum value
int findMin(int arr[], int n)
{
return *min_element(arr, arr + n);
}
// Function to find the maximum value
int findMax(int arr[], int n)
{
return *max_element(arr, arr + n);
}
// Driver code
int main()
{
int arr[] = { 1, 2, 3, 4, 5 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << "Maximum is: " << findMax(arr, N) << endl;
cout << "Minimum is: " << findMin(arr, N);
return 0;
}
Java
// Java Code to use the inbuilt Math functions
class GFG {
static int findMin(int[] arr, int n)
{
int min = arr[0];
for (int i = 1; i < n; i++) {
min = Math.min(
min,
arr[i]); // Function to get minimum element
}
return min;
}
static int findMax(int[] arr, int n)
{
int max = arr[0];
for (int i = 1; i < n; i++) {
max = Math.max(
max,
arr[i]); // Function to get maximum element
}
return max;
}
public static void main(String[] args)
{
int[] arr = { 1, 2, 3, 4, 5 };
int N = arr.length;
// Function call
System.out.print("Maximum is: " + findMax(arr, N));
System.out.print("\n"
+ "Minimum is: "
+ findMin(arr, N));
}
}
// This code is contributed by lokesh (lokeshmvs21).
Python3
# Python3 code to implement the approach
# Function to find the minimum value
def findMin(arr,n):
return min(arr)
# Function to find the maximum value
def findMax(arr,n):
return max(arr)
# Driver code
arr = [ 1, 2, 3, 4, 5 ]
N = len(arr)
# Function call
print("Maximum is: " ,findMax(arr, N))
print("Minimum is: " ,findMin(arr, N))
# This code is contributed by akashish__
C#
// C# Code to use the inbuilt Math functions
using System;
public class GFG {
static int findMin(int[] arr, int n)
{
int min = arr[0];
for (int i = 1; i < n; i++) {
min = Math.Min(
min,
arr[i]); // Function to get minimum element
}
return min;
}
static int findMax(int[] arr, int n)
{
int max = arr[0];
for (int i = 1; i < n; i++) {
max = Math.Max(
max,
arr[i]); // Function to get maximum element
}
return max;
}
public static void Main(String[] args)
{
int[] arr = { 1, 2, 3, 4, 5 };
int N = arr.Length;
// Function call
Console.Write("Maximum is: " + findMax(arr, N));
Console.Write("\n"
+ "Minimum is: "
+ findMin(arr, N));
}
}
// This code contributed by shikhasingrajput
JavaScript
<script>
// Function to find the minimum value
function findMin(arr,n)
{
let min = arr[0];
for (let i = 1; i < n; i++) {
min = Math.min(
min,
arr[i]); // Function to get minimum element
}
return min;
}
// Function to find the maximum value
function findMax(arr, n)
{
let max = arr[0];
for (let i = 1; i < n; i++) {
max = Math.max(
max,
arr[i]); // Function to get maximum element
}
return max;
}
let arr = [ 1, 2, 3, 4, 5 ];
let N = arr.length;
// Function call
console.log("Maximum is: " + findMax(arr, N));
console.log("\n"
+ "Minimum is: "
+ findMin(arr, N));
// This code is contributed by akashish__
</script>
OutputMaximum is: 5
Minimum is: 1
Time Complexity: O(N)
Auxiliary Space: O(1)
Approach 3(Minimum comparisons): To solve the problem with minimum number of comparisons, follow the below steps:
- If N is odd then initialize mini and maxi as the first element.
- If N is even then initialize mini and maxi as minimum and maximum of the first two elements respectively.
- For the rest of the elements, pick them in pairs and compare
- Maximum and minimum with maxi and mini respectively.
The total number of comparisons will be:
If N is odd: 3*(N - 1)/2
If N is even: 1 Initial comparison for initializing min and max, and 3(N - 2)/2 comparisons for rest of the elements
= 1 + 3*(N - 2) / 2 = 3N / 2 - 2
Below is the implementation of the above idea:
C++
// C++ code to implement the idea
#include <bits/stdc++.h>
using namespace std;
// Structure is used to return
// two values from minMax()
struct Pair {
int min;
int max;
};
// Function to get the minimum and the maximum
struct Pair getMinAndMax(int arr[], int n)
{
struct Pair minmax;
int i;
// If array has even number of elements
// then initialize the first two elements
// as minimum and maximum
if (n % 2 == 0) {
if (arr[0] > arr[1]) {
minmax.max = arr[0];
minmax.min = arr[1];
}
else {
minmax.min = arr[0];
minmax.max = arr[1];
}
// Set the starting index for loop
i = 2;
}
// If array has odd number of elements
// then initialize the first element as
// minimum and maximum
else {
minmax.min = arr[0];
minmax.max = arr[0];
// Set the starting index for loop
i = 1;
}
// In the while loop, pick elements in
// pair and compare the pair with max
// and min so far
while (i < n - 1) {
if (arr[i] > arr[i + 1]) {
if (arr[i] > minmax.max)
minmax.max = arr[i];
if (arr[i + 1] < minmax.min)
minmax.min = arr[i + 1];
}
else {
if (arr[i + 1] > minmax.max)
minmax.max = arr[i + 1];
if (arr[i] < minmax.min)
minmax.min = arr[i];
}
// Increment the index by 2 as
// two elements are processed in loop
i += 2;
}
return minmax;
}
// Driver code
int main()
{
int arr[] = { 1, 2, 3, 4, 5 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function call
Pair minmax = getMinAndMax(arr, N);
cout << "Maximum is: " << minmax.max << endl;
cout << "Minimum is: " << minmax.min;
return 0;
}
Java
// Java code to implement the idea
import java.util.*;
class GFG{
// Structure is used to return
// two values from minMax()
static class Pair {
int min;
int max;
Pair() {
}
};
// Function to get the minimum and the maximum
static Pair getMinAndMax(int arr[], int n)
{
Pair minmax = new Pair();
int i;
// If array has even number of elements
// then initialize the first two elements
// as minimum and maximum
if (n % 2 == 0) {
if (arr[0] > arr[1]) {
minmax.max = arr[0];
minmax.min = arr[1];
}
else {
minmax.min = arr[0];
minmax.max = arr[1];
}
// Set the starting index for loop
i = 2;
}
// If array has odd number of elements
// then initialize the first element as
// minimum and maximum
else {
minmax.min = arr[0];
minmax.max = arr[0];
// Set the starting index for loop
i = 1;
}
// In the while loop, pick elements in
// pair and compare the pair with max
// and min so far
while (i < n - 1) {
if (arr[i] > arr[i + 1]) {
if (arr[i] > minmax.max)
minmax.max = arr[i];
if (arr[i + 1] < minmax.min)
minmax.min = arr[i + 1];
}
else {
if (arr[i + 1] > minmax.max)
minmax.max = arr[i + 1];
if (arr[i] < minmax.min)
minmax.min = arr[i];
}
// Increment the index by 2 as
// two elements are processed in loop
i += 2;
}
return minmax;
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 1, 2, 3, 4, 5 };
int N = arr.length;
// Function call
Pair minmax = getMinAndMax(arr, N);
System.out.print("Maximum is: " + minmax.max +"\n");
System.out.print("Minimum is: " + minmax.min);
}
}
// This code contributed by shikhasingrajput
Python3
# Python3 code to implement the idea
# array is used to return
# two values from minMax()
# min = arr[0], max = arr[1]
minmax = [0,0]
# Function to get the minimum and the maximum
def getMinAndMax(arr,n):
# If array has even number of elements
# then initialize the first two elements
# as minimum and maximum
if (n % 2 == 0):
if (arr[0] > arr[1]):
minmax[0] = arr[0]
minmax[1] = arr[1]
else:
minmax[0] = arr[0]
minmax[1] = arr[1]
# Set the starting index for loop
i = 2;
# If array has odd number of elements
# then initialize the first element as
# minimum and maximum
else:
minmax[0] = arr[0]
minmax[1] = arr[0]
# Set the starting index for loop
i = 1
# In the while loop, pick elements in
# pair and compare the pair with max
# and min so far
while (i < n - 1):
if (arr[i] > arr[i + 1]):
if (arr[i] > minmax[1]):
minmax[1] = arr[i]
if (arr[i + 1] < minmax[0]):
minmax[0] = arr[i + 1]
else:
if (arr[i + 1] > minmax[1]):
minmax[1] = arr[i + 1]
if (arr[i] < minmax[0]):
minmax[0] = arr[i]
# Increment the index by 2 as
# two elements are processed in loop
i += 2
# Driver code
arr = [ 1, 2, 3, 4, 5 ]
N = len(arr)
# Function call
getMinAndMax(arr, N);
print( "Maximum is: " , minmax[1] )
print( "Minimum is: " , minmax[0] )
# This code is contributed by akashish__
C#
// C# code to implement the idea
using System;
public class GFG{
// Structure is used to return
// two values from minMax()
class Pair {
public int min;
public int max;
public Pair() {
}
};
// Function to get the minimum and the maximum
static Pair getMinAndMax(int []arr, int n)
{
Pair minmax = new Pair();
int i;
// If array has even number of elements
// then initialize the first two elements
// as minimum and maximum
if (n % 2 == 0) {
if (arr[0] > arr[1]) {
minmax.max = arr[0];
minmax.min = arr[1];
}
else {
minmax.min = arr[0];
minmax.max = arr[1];
}
// Set the starting index for loop
i = 2;
}
// If array has odd number of elements
// then initialize the first element as
// minimum and maximum
else {
minmax.min = arr[0];
minmax.max = arr[0];
// Set the starting index for loop
i = 1;
}
// In the while loop, pick elements in
// pair and compare the pair with max
// and min so far
while (i < n - 1) {
if (arr[i] > arr[i + 1]) {
if (arr[i] > minmax.max)
minmax.max = arr[i];
if (arr[i + 1] < minmax.min)
minmax.min = arr[i + 1];
}
else {
if (arr[i + 1] > minmax.max)
minmax.max = arr[i + 1];
if (arr[i] < minmax.min)
minmax.min = arr[i];
}
// Increment the index by 2 as
// two elements are processed in loop
i += 2;
}
return minmax;
}
// Driver code
public static void Main(String[] args)
{
int []arr = { 1, 2, 3, 4, 5 };
int N = arr.Length;
// Function call
Pair minmax = getMinAndMax(arr, N);
Console.Write("Maximum is: " + minmax.max +"\n");
Console.Write("Minimum is: " + minmax.min);
}
}
// This code contributed by shikhasingrajput
JavaScript
<script>
// Javascript code to implement the idea
// array is used to return
// two values from minMax()
// min = arr[0], max = arr[1]
let minmax = [0,0]
// Function to get the minimum and the maximum
function getMinAndMax(arr,n)
{
let i;
// If array has even number of elements
// then initialize the first two elements
// as minimum and maximum
if (n % 2 == 0) {
if (arr[0] > arr[1]) {
minmax[0] = arr[0];
minmax[1] = arr[1];
}
else {
minmax[0] = arr[0];
minmax[1] = arr[1];
}
// Set the starting index for loop
i = 2;
}
// If array has odd number of elements
// then initialize the first element as
// minimum and maximum
else {
minmax[0] = arr[0];
minmax[1] = arr[0];
// Set the starting index for loop
i = 1;
}
// In the while loop, pick elements in
// pair and compare the pair with max
// and min so far
while (i < n - 1) {
if (arr[i] > arr[i + 1]) {
if (arr[i] > minmax[1])
minmax[1] = arr[i];
if (arr[i + 1] < minmax[0])
minmax[0] = arr[i + 1];
}
else {
if (arr[i + 1] > minmax[1])
minmax[1] = arr[i + 1];
if (arr[i] < minmax[0])
minmax[0] = arr[i];
}
// Increment the index by 2 as
// two elements are processed in loop
i += 2;
}
}
// Driver code
let arr = [ 1, 2, 3, 4, 5 ];
let N = arr.length;
// Function call
getMinAndMax(arr, N);
console.log( "Maximum is: " + minmax[1] );
console.log( "Minimum is: " + minmax[0] );
// contributed by akashish__
</script>
OutputMaximum is: 5
Minimum is: 1
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem