Open In App

How to Fix Error in aggregate.data.frame in R

Last Updated : 05 May, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

The aggregate function in R applies the data aggregation on the basis of required factors. Yet, users are bound to find errors while dealing with data frames. In this article, common errors and effective solutions to solve them are elucidated.

Common Errors in aggregate.data.frame

Errors may arise, particularly when applying it to a data frame.

1. Aggregating a Data Frame with No Numeric Columns

R
df <- data.frame(names = c("Alice", "Bob", "Charlie"),
                 age = c(25, 30, 22))
                 
result <- aggregate(df, by = list(df$names), FUN = sum)

Output:

Error in FUN(X[[i]], ...) : invalid 'type' (character) of argument

Cause: This error occurs when attempting to aggregate a data frame with no numeric columns.

Solution: To solve this error Ensure that the data frame contains numeric columns to aggregate.

R
df <- data.frame(names = c("Alice", "Bob", "Charlie"),
                 age = c(25, 30, 22),
                 score = c(90, 85, 92))
df 
result <- aggregate(df[, c("age", "score")], by = list(df$names), FUN = sum)
result

Output:

names age score
1 Alice 25 90
2 Bob 30 85
3 Charlie 22 92
Group.1 age score
1 Alice 25 90
2 Bob 30 85
3 Charlie 22 92

2. Object Not Found Error

R
df <- data.frame(names = c("Alice", "Bob", "Charlie"),
                 age = c(25, 30, 22),
                 score = c(90, 85, 92))
                 
result <- aggregate(df$nonexistent_column, by = list(df$names), FUN = mean)
result

Output:

Error in aggregate.data.frame(as.data.frame(x), ...) :
no rows to aggregate

Cause: This error occurs when the specified column names or formula variables are not found in the data frame.

Solution: To solve this error Verify that the specified column names or formula variables exist in the data frame.

R
df <- data.frame(names = c("Alice", "Bob", "Charlie"),
                 age = c(25, 30, 22),
                 score = c(90, 85, 92))

result <- aggregate(df[, c("age", "score")], by = list(df$names), FUN = mean)
result

Output:

Group.1 age score
1 Alice 25 90
2 Bob 30 85
3 Charlie 22 92

Best Practices to Avoid Errors

  1. Check Data Types: Ensure that the columns used in aggregation functions have appropriate data types (numeric or categorical).
  2. Verify Column Existence: Double-check the existence of specified column names or formula variables before using them in the aggregate function.
  3. Consistent Grouping Variables: Make sure that the grouping variables have the same length to avoid "arguments must have the same length" errors.

Related Articles:


    Next Article
    Article Tags :

    Similar Reads