# create sample data
Sample_Data <- data.frame(
var1=c(5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 11),
var2=c(4, 4, 5, 5, 5, 7, 8, 6, 9, 7, 7, 8, 9, 14))
# create new column for average measurement
Sample_Data$average <- rowMeans(Sample_Data)
# create new column for difference measurement
Sample_Data$difference <- Sample_Data$var1 - Sample_Data$var2
# calculate mean difference
mean_difference <- mean(Sample_Data$difference)
# calculate upper and lower limits of the
# Confidence interval of 90%
lower_limit <- mean_difference - 1.91*sd( Sample_Data$difference )
upper_limit <- mean_difference + 1.91*sd( Sample_Data$difference )
# load library ggplot2
library(ggplot2)
# Plot the Bland-Altmon Plot
ggplot(Sample_Data, aes(x = average, y = difference)) +
geom_point(size=3) +
geom_hline(yintercept = mean_difference, color= "red", lwd=1.5) +
geom_hline(yintercept = lower_limit, color = "green", lwd=1.5) +
geom_hline(yintercept = upper_limit, color = "green", lwd=1.5)