How to Compute the Heaviside Step Function for Each Element in Input in PyTorch? Last Updated : 23 Jul, 2025 Comments Improve Suggest changes Like Article Like Report In this article, we are going to cover how to compute the Heaviside step function for each element in input in PyTorch using Python. We can compute this with the help of torch.heaviside() method. torch.heaviside() method The torch.heaviside() method is used to compute the Heaviside step function for each element. This method accepts input and values as parameters. The parameters type should be tensor only. If the input < 0 then it return 0. whereas, if input > 0 then this method 1 respectively. If the input=0 then this method returns a value the same as the values (one of the parameters). Below is the syntax of the given method: Syntax: torch.heaviside(input, value) Parameters: input (Tensor): This is our input tensor.value (Tensor): This value is a tensor and it's where input is 0. Return: This method returns the computed heaviside step function. Example 1 In this example, we compute the Heaviside step function for each element in the given 1D tensor. Python3 # Import the required libraries import torch # define two tensors input_tens = torch.tensor([0.3, -1.2, 0, 2.0, 0.9]) values_tens = torch.tensor([0.2]) # display above defined tensors print(" The Input Tensor: ", input_tens) print(" The Values Tensor: ", values_tens) # compute heaviside step function for each # element hea = torch.heaviside(input_tens, values_tens) # Display Output print(" computed Heaviside step function for each element: \n", hea) Output: Example 2 In the following example, we compute the Heaviside step function for each element in the given 2D tensor. Python3 # Import the required libraries import torch # define a 2D tensor for input input_tens = input = torch.tensor([[-2.9, 0.0, -1.6, 2.5], [0.0, -1.2, 0.0, 0.0], [-2.3, 0.0, 1.8, -1.3], [0.0, 2.2, -1.3, 0.0]]) # define a tensor for values values_tens = torch.tensor([0.2, 0.3, 0.4, 0.5]) # display above defined tensors print("\n\n The Input Tensor: \n", input_tens) print("\n The Values Tensor: \n", values_tens) # compute heaviside step function for each # element hea = torch.heaviside(input_tens, values_tens) # Display Output print("\n computed Heaviside step function for each element: \n", hea) Output: Create Quiz Comment M mukulsomukesh Follow 0 Improve M mukulsomukesh Follow 0 Improve Article Tags : Python Python-PyTorch Explore Python FundamentalsPython Introduction 2 min read Input and Output in Python 4 min read Python Variables 4 min read Python Operators 4 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 5 min read Python Functions 5 min read Recursion in Python 4 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 4 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 3 min read Python MySQL 9 min read Python Packages 10 min read Python Modules 3 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 4 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 3 min read StatsModel Library - Tutorial 3 min read Learning Model Building in Scikit-learn 6 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 6 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 5 min read Build a REST API using Flask - Python 3 min read Building a Simple API with Django REST Framework 3 min read Python PracticePython Quiz 1 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like