Two Sum - Pair with given Sum
Last Updated :
26 Jul, 2025
Given an array arr[] of n integers and a target value, check if there exists a pair whose sum equals the target. This is a variation of the 2-Sum problem.
Examples:
Input: arr[] = [0, -1, 2, -3, 1], target = -2
Output: true
Explanation: There is a pair (1, -3) with the sum equal to given target, 1 + (-3) = -2.
Input: arr[] = [1, -2, 1, 0, 5], target = 0
Output: false
Explanation: There is no pair with sum equals to given target.
[Naive Approach] Generating all Possible Pairs - O(n2) time and O(1) space
The basic approach is to generate all the possible pairs and check if any of them add up to the target value. To generate all pairs, we simply run two nested loops.
C++
#include <iostream>
#include <vector>
using namespace std;
bool twoSum(vector<int> &arr, int target) {
int n = arr.size();
for (int i = 0; i < n; i++) {
// For each element arr[i], check every
// other element arr[j] that comes after it
for (int j = i + 1; j < n; j++) {
// Check if the sum of the current pair
// equals the target
if (arr[i] + arr[j] == target) {
return true;
}
}
}
// If no pair is found after checking
// all possibilities
return false;
}
int main() {
vector<int> arr = {0, -1, 2, -3, 1};
int target = -2;
if(twoSum(arr, target))
cout << "true";
else
cout << "false";
return 0;
}
C
#include <stdbool.h>
#include <stdio.h>
bool twoSum(int arr[], int n, int target){
for (int i = 0; i < n; i++){
// For each element arr[i], check every
// other element arr[j] that comes after it
for (int j = i + 1; j < n; j++){
// Check if the sum of the current pair
// equals the target
if (arr[i] + arr[j] == target)
return true;
}
}
// If no pair is found after checking
// all possibilities
return false;
}
int main(){
int arr[] = {0, -1, 2, -3, 1};
int target = -2;
int n = sizeof(arr) / sizeof(arr[0]);
// Call the twoSum function and print the result
if (twoSum(arr, n, target))
printf("true\n");
else
printf("false\n");
return 0;
}
Java
class GfG {
static boolean twoSum(int[] arr, int target){
int n = arr.length;
for (int i = 0; i < n; i++) {
// For each element arr[i], check every
// other element arr[j] that comes after it
for (int j = i + 1; j < n; j++) {
// Check if the sum of the current pair
// equals the target
if (arr[i] + arr[j] == target) {
return true;
}
}
}
// If no pair is found after checking
// all possibilities
return false;
}
public static void main(String[] args){
int[] arr = { 0, -1, 2, -3, 1 };
int target = -2;
if (twoSum(arr, target))
System.out.println("true");
else
System.out.println("false");
}
}
Python
def twoSum(arr, target):
n = len(arr)
for i in range(n):
# For each element arr[i], check every
# other element arr[j] that comes after it
for j in range(i + 1, n):
# Check if the sum of the current pair
# equals the target
if arr[i] + arr[j] == target:
return True
# If no pair is found after checking
# all possibilities
return False
if __name__ == "__main__":
arr = [0, -1, 2, -3, 1]
target = -2
if twoSum(arr, target):
print("true")
else:
print("false")
C#
using System;
class GfG {
static bool twoSum(int[] arr, int target) {
int n = arr.Length;
for (int i = 0; i < n; i++) {
// For each element arr[i], check every
// other element arr[j] that comes after it
for (int j = i + 1; j < n; j++) {
// Check if the sum of the current pair
// equals the target
if (arr[i] + arr[j] == target) {
return true;
}
}
}
// If no pair is found after checking
// all possibilities
return false;
}
static void Main() {
int[] arr = { 0, -1, 2, -3, 1 };
int target = -2;
if (twoSum(arr, target))
Console.WriteLine("true");
else
Console.WriteLine("false");
}
}
JavaScript
function twoSum(arr, target) {
let n = arr.length;
for (let i = 0; i < n; i++) {
// For each element arr[i], check every
// other element arr[j] that comes after it
for (let j = i + 1; j < n; j++) {
// Check if the sum of the current pair
// equals the target
if (arr[i] + arr[j] === target) {
return true;
}
}
}
// If no pair is found after checking
// all possibilities
return false;
}
// Driver Code
let arr = [0, -1, 2, -3, 1];
let target = -2;
if (twoSum(arr, target))
console.log("true");
else
console.log("false");
[Better Approach 1] Sorting and Binary Search - O(n × log(n)) time and O(1) space
To check if a pair with a given sum exists in the array, we first sort the array. Then for each element, we compute the required complement (i.e., target - arr[i]) and perform binary search on the remaining subarray (from index i+1 to end) to find that complement.
Step By Step Implementation:
- Sort the array in non-decreasing order.
- Loop through each element arr[i] from index 0 to n-2.
- For each arr[i], calculate complement = target - arr[i].
- Perform binary search for complement in the subarray from index i+1 to n-1.
- If the complement is found, return true.
- If the loop completes without finding any valid pair, return false.
C++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// Function to perform binary search
bool binarySearch(vector<int> &arr, int left,
int right, int target){
while (left <= right){
int mid = left + (right - left) / 2;
if (arr[mid] == target)
return true;
if (arr[mid] < target)
left = mid + 1;
else
right = mid - 1;
}
return false;
}
bool twoSum(vector<int> &arr, int target){
sort(arr.begin(), arr.end());
for (int i = 0; i < arr.size(); i++){
int complement = target - arr[i];
// Use binary search to
// find the complement
if (binarySearch(arr, i + 1,
arr.size() - 1, complement))
return true;
}
// If no pair is found
return false;
}
int main(){
vector<int> arr = {0, -1, 2, -3, 1};
int target = -2;
if (twoSum(arr, target))
cout << "true";
else
cout << "false";
return 0;
}
C
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
// Comparison function for qsort
int compare(const void *a, const void *b){
return (*(int *)a - *(int *)b);
}
// Function to perform binary search
bool binarySearch(int arr[], int left,
int right, int target){
while (left <= right){
int mid = left + (right - left) / 2;
if (arr[mid] == target)
return true;
if (arr[mid] < target)
left = mid + 1;
else
right = mid - 1;
}
return false;
}
bool twoSum(int arr[], int n, int target){
qsort(arr, n, sizeof(int), compare);
for (int i = 0; i < n; i++){
int complement = target - arr[i];
// Use binary search to
// find the complement
if (binarySearch(arr, i + 1,
n - 1, complement))
return true;
}
// If no pair is found
return false;
}
int main(){
int arr[] = {0, -1, 2, -3, 1};
int target = -2;
int n = sizeof(arr) / sizeof(arr[0]);
if (twoSum(arr, n, target))
printf("true\n");
else
printf("false\n");
return 0;
}
Java
import java.util.Arrays;
class GfG {
// Function to perform binary search
static boolean binarySearch(int[] arr, int left,
int right, int target){
while (left <= right) {
int mid = left + (right - left) / 2;
if (arr[mid] == target)
return true;
if (arr[mid] < target)
left = mid + 1;
else
right = mid - 1;
}
return false;
}
static boolean twoSum(int[] arr, int target){
Arrays.sort(arr);
for (int i = 0; i < arr.length; i++) {
int complement = target - arr[i];
// Use binary search to find the complement
if (binarySearch(arr, i + 1, arr.length - 1,
complement))
return true;
}
// If no pair is found
return false;
}
public static void main(String[] args){
int[] arr = { 0, -1, 2, -3, 1 };
int target = -2;
if (twoSum(arr, target)) {
System.out.println("true");
}
else {
System.out.println("false");
}
}
}
Python
# Function to perform binary search
def binarySearch(arr, left, right, target):
while left <= right:
mid = left + (right - left) // 2
if arr[mid] == target:
return True
elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1
return False
def twoSum(arr, target):
arr.sort()
for i in range(len(arr)):
complement = target - arr[i]
# Use binary search to find the complement
if binarySearch(arr, i + 1,
len(arr) - 1, complement):
return True
# If no pair is found
return False
if __name__ == "__main__":
arr = [0, -1, 2, -3, 1]
target = -2
if twoSum(arr, target):
print("true")
else:
print("false")
C#
using System;
class GfG {
// Function to perform binary search
static bool binarySearch(int[] arr, int left,
int right, int target){
while (left <= right) {
int mid = left + (right - left) / 2;
if (arr[mid] == target)
return true;
if (arr[mid] < target)
left = mid + 1;
else
right = mid - 1;
}
return false;
}
static bool twoSum(int[] arr, int target){
Array.Sort(arr);
for (int i = 0; i < arr.Length; i++) {
int complement = target - arr[i];
// Use binary search to find the complement
if (binarySearch(arr, i + 1, arr.Length - 1,
complement))
return true;
}
// If no pair is found
return false;
}
static void Main(){
int[] arr = { 0, -1, 2, -3, 1 };
int target = -2;
if (twoSum(arr, target)) {
Console.WriteLine("true");
}
else {
Console.WriteLine("false");
}
}
}
JavaScript
// Function to perform binary search
function binarySearch(arr, left, right, target) {
while (left <= right) {
let mid = Math.floor(left + (right - left) / 2);
if (arr[mid] === target)
return true;
if (arr[mid] < target)
left = mid + 1;
else
right = mid - 1;
}
return false;
}
function twoSum(arr, target) {
arr.sort((a, b) => a - b);
for (let i = 0; i < arr.length; i++) {
let complement = target - arr[i];
// Use binary search to find the complement
if (binarySearch(arr, i + 1,
arr.length - 1, complement))
return true;
}
// If no pair is found
return false;
}
// Driver Code
let arr = [0, -1, 2, -3, 1];
let target = -2;
if (twoSum(arr, target)) {
console.log("true");
} else {
console.log("false");
}
[Better Approach 2] Sorting and Two-Pointer Technique - O(n × log(n)) time and O(1) space
The idea is to use the two-pointer technique but for using the two-pointer technique, the array must be sorted. Once the array is sorted then we can use this approach by keeping one pointer at the beginning (left) and another at the end (right) of the array.
Check the sum of the elements at these two pointers:
- If the sum equals the target, we’ve found the pair.
- If the sum is less than the target, move the left pointer to the right to increase the sum.
- If the sum is greater than the target, move the right pointer to the left to decrease the sum.
Note: This approach is the best approach for a sorted array. But if array is not sorted, then we use the below approach.
C++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
bool twoSum(vector<int> &arr, int target){
sort(arr.begin(), arr.end());
int left = 0, right = arr.size() - 1;
// Iterate while left pointer
// is less than right
while (left < right){
int sum = arr[left] + arr[right];
// Check if the sum matches the target
if (sum == target)
return true;
else if (sum < target)
// Move left pointer to the right
left++;
else
// Move right pointer to the left
right--;
}
// If no pair is found
return false;
}
int main(){
vector<int> arr = {0, -1, 2, -3, 1};
int target = -2;
if (twoSum(arr, target))
cout << "true";
else
cout << "false";
return 0;
}
C
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
// Comparison function for qsort
int compare(const void *a, const void *b){
return (*(int *)a - *(int *)b);
}
bool twoSum(int arr[], int n, int target){
qsort(arr, n, sizeof(int), compare);
int left = 0, right = n - 1;
// Iterate while left pointer is less than right
while (left < right){
int sum = arr[left] + arr[right];
// Check if the sum matches the target
if (sum == target)
return true;
else if (sum < target)
// Move left pointer to the right
left++;
else
// Move right pointer to the left
right--;
}
// If no pair is found
return false;
}
int main(){
int arr[] = {0, -1, 2, -3, 1};
int target = -2;
int n = sizeof(arr) / sizeof(arr[0]);
if (twoSum(arr, n, target))
printf("true\n");
else
printf("false\n");
return 0;
}
Java
import java.util.Arrays;
class GfG {
static boolean twoSum(int[] arr, int target){
Arrays.sort(arr);
int left = 0, right = arr.length - 1;
// Iterate while left pointer is less than right
while (left < right) {
int sum = arr[left] + arr[right];
// Check if the sum matches the target
if (sum == target)
return true;
else if (sum < target)
// Move left pointer to the right
left++;
else
// Move right pointer to the left
right--;
}
// If no pair is found
return false;
}
public static void main(String[] args){
int[] arr = { 0, -1, 2, -3, 1 };
int target = -2;
if (twoSum(arr, target)) {
System.out.println("true");
}
else {
System.out.println("false");
}
}
}
Python
def twoSum(arr, target):
arr.sort()
left, right = 0, len(arr) - 1
# Iterate while left pointer is less than right
while left < right:
sum = arr[left] + arr[right]
# Check if the sum matches the target
if sum == target:
return True
elif sum < target:
# Move left pointer to the right
left += 1
else:
# Move right pointer to the left
right -= 1
# If no pair is found
return False
if __name__ == "__main__":
arr = [0, -1, 2, -3, 1]
target = -2
if twoSum(arr, target):
print("true")
else:
print("false")
C#
using System;
using System.Linq;
class GfG {
static bool twoSum(int[] arr, int target){
Array.Sort(arr);
int left = 0, right = arr.Length - 1;
// Iterate while left pointer is less than right
while (left < right) {
int sum = arr[left] + arr[right];
// Check if the sum matches the target
if (sum == target)
return true;
else if (sum < target)
// Move left pointer to the right
left++;
else
// Move right pointer to the left
right--;
}
// If no pair is found
return false;
}
static void Main(){
int[] arr = { 0, -1, 2, -3, 1 };
int target = -2;
if (twoSum(arr, target))
Console.WriteLine("true");
else
Console.WriteLine("false");
}
}
JavaScript
function twoSum(arr, target)
{
arr.sort((a, b) => a - b);
let left = 0, right = arr.length - 1;
// Iterate while left pointer is less than right
while (left < right) {
let sum = arr[left] + arr[right];
// Check if the sum matches the target
if (sum === target)
return true;
else if (sum < target)
// Move left pointer to the right
left++;
else
// Move right pointer to the left
right--;
}
// If no pair is found
return false;
}
// Driver Code
let arr = [ 0, -1, 2, -3, 1 ];
let target = -2;
if (twoSum(arr, target)) {
console.log("true");
} else {
console.log("false");
}
[Expected Approach] Using Hash Set - O(n) time and O(n) space
Hashing provides a more efficient solution to the 2-Sum problem. Rather than checking every possible pair, we store each number in an unordered set during iterating over the array's elements. For each number, we calculate its complement (i.e., target - current number) and check if this complement exists in the set. If it does, we have successfully found the pair that sums to the target.
Step By Step Implementations:
- Create an empty Hash Set or Unordered Set
- Iterate through the array and for each number in the array:
=> Calculate the complement (target - current number).
=> Check if the complement exists in the set:
- If it is, then pair found.
- If it isn’t, add the current number to the set. - If the loop completes without finding a pair, return that no pair exists.
C++
#include <iostream>
#include <vector>
#include <unordered_set>
using namespace std;
bool twoSum(vector<int> &arr, int target){
// Create an unordered_set to store the elements
unordered_set<int> s;
for (int i = 0; i < arr.size(); i++){
// Calculate the complement that added to
// arr[i], equals the target
int complement = target - arr[i];
// Check if the complement exists in the set
if (s.find(complement) != s.end())
return true;
// Add the current element to the set
s.insert(arr[i]);
}
// If no pair is found
return false;
}
int main(){
vector<int> arr = {0, -1, 2, -3, 1};
int target = -2;
if (twoSum(arr, target))
cout << "true";
else
cout << "false";
return 0;
}
Java
import java.util.HashSet;
class GfG {
static boolean twoSum(int[] arr, int target){
// Create a HashSet to store the elements
HashSet<Integer> set = new HashSet<>();
for (int i = 0; i < arr.length; i++) {
// Calculate the complement that added to
// arr[i], equals the target
int complement = target - arr[i];
// Check if the complement exists in the set
if (set.contains(complement)) {
return true;
}
// Add the current element to the set
set.add(arr[i]);
}
// If no pair is found
return false;
}
public static void main(String[] args){
int[] arr = { 0, -1, 2, -3, 1 };
int target = -2;
if (twoSum(arr, target))
System.out.println("true");
else
System.out.println("false");
}
}
Python
def twoSum(arr, target):
# Create a set to store the elements
s = set()
for num in arr:
# Calculate the complement that added to
# num, equals the target
complement = target - num
# Check if the complement exists in the set
if complement in s:
return True
# Add the current element to the set
s.add(num)
# If no pair is found
return False
if __name__ == "__main__":
arr = [0, -1, 2, -3, 1]
target = -2
if twoSum(arr, target):
print("true")
else:
print("false")
C#
using System;
using System.Collections.Generic;
class GfG {
static bool twoSum(int[] arr, int target){
// Create a HashSet to store the elements
HashSet<int> set = new HashSet<int>();
for (int i = 0; i < arr.Length; i++) {
// Calculate the complement that added to
// arr[i], equals the target
int complement = target - arr[i];
// Check if the complement exists in the set
if (set.Contains(complement))
return true;
// Add the current element to the set
set.Add(arr[i]);
}
// If no pair is found
return false;
}
static void Main(){
int[] arr = { 0, -1, 2, -3, 1 };
int target = -2;
if (twoSum(arr, target))
Console.WriteLine("true");
else
Console.WriteLine("false");
}
}
JavaScript
function twoSum(arr, target) {
// Create a Set to store the elements
let set = new Set();
for (let num of arr) {
// Calculate the complement that added to
// num, equals the target
let complement = target - num;
// Check if the complement exists in the set
if (set.has(complement)) {
return true;
}
// Add the current element to the set
set.add(num);
}
// If no pair is found
return false;
}
// Driver Code
let arr = [0, -1, 2, -3, 1];
let target = -2;
if (twoSum(arr, target))
console.log("true");
else
console.log("false");
Related Problems:
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem