Generate an N-length array having length of non-decreasing subarrays maximized and minimum difference between first and last array elements
Last Updated :
23 Jul, 2025
Given an array arr[ ] of size N, the task is to print an N-length array whose sum of lengths of all non-decreasing subarrays is maximum and the difference between the first and last elements is minimum.
Examples:
Input: N = 5, arr = {4, 3, 5, 3, 2}
Output: {3, 4, 5, 2, 3}
Explanation: Difference between the first and last element is minimum, i.e. 3 - 3 = 0, and sum of non-decreasing subarrays is maximum, i.e.
1. {3, 4, 5}, length = 3
2. {2, 3}, length = 2
therefore sum of non-decreasing sub-arrays is 5.
Input: N = 8, arr = {4, 6, 2, 6, 8, 2, 6, 4}
Output: {2, 4, 4, 6, 6, 6, 8, 2}
Approach: The problem can be solved greedily. Follow the steps below to solve the problem:
- Sort the array arr[ ] in non-decreasing order.
- Find the index of two consecutive elements with minimum difference, say i and i + 1.
- Swap arr[0] with arr[i] and arr[N] with arr[i + 1].
- Swap arr[1 : i - 1] with arr[i + 2 : N - 1].
- Print the array arr[ ].
Below is the implementation of the above approach:
C++
// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
// Function to print target array
void printArr(int arr[], int n)
{
// Sort the given array
sort(arr, arr + n);
// Seeking for index of elements with minimum diff.
int minDifference = INT_MAX;
int minIndex = -1;
// Seeking for index
for (int i = 1; i < n; i++) {
if (minDifference
> abs(arr[i] - arr[i - 1])) {
minDifference = abs(arr[i] - arr[i - 1]);
minIndex = i - 1;
}
}
// To store target array
int Arr[n];
Arr[0] = arr[minIndex];
Arr[n - 1] = arr[minIndex + 1];
int pos = 1;
// Copying element
for (int i = minIndex + 2; i < n; i++) {
Arr[pos++] = arr[i];
}
// Copying remaining element
for (int i = 0; i < minIndex; i++) {
Arr[pos++] = arr[i];
}
// Printing target array
for (int i = 0; i < n; i++) {
cout << Arr[i] << " ";
}
}
// Driver Code
int main()
{
// Given Input
int N = 8;
int arr[] = { 4, 6, 2, 6, 8, 2, 6, 4 };
// Function Call
printArr(arr, N);
return 0;
}
Java
// Java program for above approach
import java.io.*;
import java.util.*;
class GFG{
// Function to print target array
public static void printArr(int arr[], int n)
{
// Sort the given array
Arrays.sort(arr);
// Seeking for index of elements
// with minimum diff.
int minDifference = 1000000007;
int minIndex = -1;
// Seeking for index
for(int i = 1; i < n; i++)
{
if (minDifference >
Math.abs(arr[i] - arr[i - 1]))
{
minDifference = Math.abs(arr[i] -
arr[i - 1]);
minIndex = i - 1;
}
}
// To store target array
int Arr[] = new int[n];
Arr[0] = arr[minIndex];
Arr[n - 1] = arr[minIndex + 1];
int pos = 1;
// Copying element
for(int i = minIndex + 2; i < n; i++)
{
Arr[pos++] = arr[i];
}
// Copying remaining element
for(int i = 0; i < minIndex; i++)
{
Arr[pos++] = arr[i];
}
// Printing target array
for(int i = 0; i < n; i++)
{
System.out.print(Arr[i] + " ");
}
}
// Driver code
public static void main(String[] args)
{
int N = 8;
int arr[] = { 4, 6, 2, 6, 8, 2, 6, 4 };
// Function Call
printArr(arr, N);
}
}
// This code is contributed by maddler
Python3
# Python3 program for above approach
import sys
# Function to print target array
def printArr(arr, n):
# Sort the given array
arr.sort()
# Seeking for index of elements with minimum diff.
minDifference = sys.maxsize
minIndex = -1
# Seeking for index
for i in range(1,n,1):
if (minDifference > abs(arr[i] - arr[i - 1])):
minDifference = abs(arr[i] - arr[i - 1])
minIndex = i - 1
# To store target array
Arr = [0 for i in range(n)]
Arr[0] = arr[minIndex]
Arr[n - 1] = arr[minIndex + 1]
pos = 1
# Copying element
for i in range(minIndex + 2,n,1):
Arr[pos] = arr[i]
pos += 1
# Copying remaining element
for i in range(minIndex):
Arr[pos] = arr[i]
pos += 1
# Printing target array
for i in range(n):
print(Arr[i],end = " ")
# Driver Code
if __name__ == '__main__':
# Given Input
N = 8
arr = [4, 6, 2, 6, 8, 2, 6, 4]
# Function Call
printArr(arr, N)
# This code is contributed by bgangwar59.
C#
// C# program for above approach
using System;
class GFG{
// Function to print target array
public static void printArr(int []arr, int n)
{
// Sort the given array
Array.Sort(arr);
// Seeking for index of elements
// with minimum diff.
int minDifference = 1000000007;
int minIndex = -1;
// Seeking for index
for(int i = 1; i < n; i++)
{
if (minDifference >
Math.Abs(arr[i] - arr[i - 1]))
{
minDifference = Math.Abs(arr[i] -
arr[i - 1]);
minIndex = i - 1;
}
}
// To store target array
int []Arr = new int[n];
Arr[0] = arr[minIndex];
Arr[n - 1] = arr[minIndex + 1];
int pos = 1;
// Copying element
for(int i = minIndex + 2; i < n; i++)
{
Arr[pos++] = arr[i];
}
// Copying remaining element
for(int i = 0; i < minIndex; i++)
{
Arr[pos++] = arr[i];
}
// Printing target array
for(int i = 0; i < n; i++)
{
Console.Write(Arr[i] + " ");
}
}
// Driver code
public static void Main(String[] args)
{
int N = 8;
int []arr = { 4, 6, 2, 6, 8, 2, 6, 4 };
// Function Call
printArr(arr, N);
}
}
// This code is contributed by shivanisinghss2110
JavaScript
<script>
// Javascript program for above approach
// Function to print target array
function printArr(arr, n)
{
// Sort the given array
arr.sort((a, b) => a - b);
// Seeking for index of elements
// with minimum diff.
let minDifference = Number.MAX_SAFE_INTEGER;
let minIndex = -1;
// Seeking for index
for(let i = 1; i < n; i++)
{
if (minDifference > Math.abs(arr[i] - arr[i - 1]))
{
minDifference = Math.abs(arr[i] - arr[i - 1]);
minIndex = i - 1;
}
}
// To store target array
let Arr = new Array(n);
Arr[0] = arr[minIndex];
Arr[n - 1] = arr[minIndex + 1];
let pos = 1;
// Copying element
for(let i = minIndex + 2; i < n; i++)
{
Arr[pos++] = arr[i];
}
// Copying remaining element
for(let i = 0; i < minIndex; i++)
{
Arr[pos++] = arr[i];
}
// Printing target array
for(let i = 0; i < n; i++)
{
document.write(Arr[i] + " ");
}
}
// Driver Code
// Given Input
let N = 8;
let arr = [ 4, 6, 2, 6, 8, 2, 6, 4 ];
// Function Call
printArr(arr, N);
// This code is contributed by gfgking
</script>
Time complexity: O(N*logN)
Auxiliary Space: O(N)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem