Find a triplet such that sum of two equals to third element Last Updated : 20 Feb, 2025 Comments Improve Suggest changes Like Article Like Report Try it on GfG Practice Given an array of integers, you have to find three numbers such that the sum of two elements equals the third element.Examples:Input: arr[] = [1, 2, 3, 4, 5]Output: TrueExplanation: The pair (1, 2) sums to 3.Input: arr[] = [3, 4, 5]Output: TrueExplanation: No triplets satisfy the condition.Input: arr[] = [2, 7, 9, 15]Output: TrueExplanation: The pair (2, 7) sums to 9.Table of Content[Naive Approach] Triple Loop Triplet Finder - O(n^3) time and O(1) space[Better Approach] Sorting with Binary Search for Triplet Finding - O(n^2 * log n) time and O(1) space[Expected Approach] Two-Pointer Technique - O(n^2) time and O(1) space[Naive Approach] Triple Loop Triplet Finder - O(n^3) time and O(1) spaceThis approach uses three nested loops to examine all possible triplets in the array. It checks if the sum of any two elements equals the third element and prints all such valid triplets. C++ #include <bits/stdc++.h> using namespace std; bool findTriplet(vector<int>& arr) { int n = arr.size(); // Iterate through all possible triplets for (int i = 0; i < n - 2; i++) { for (int j = i + 1; j < n - 1; j++) { for (int k = j + 1; k < n; k++) { // Check if sum of two elements equals the third element if (arr[i] + arr[j] == arr[k] || arr[i] + arr[k] == arr[j] || arr[j] + arr[k] == arr[i]) { return true; } } } } return false; } // Driver Code with Predefined Input int main() { vector<int> arr = {1, 2, 3, 4, 5}; if (findTriplet(arr)) cout << "true" << endl; else cout << "false" << endl; return 0; } C #include <stdio.h> #include <stdbool.h> bool findTriplet(int arr[], int n) { // Iterate through all possible triplets for (int i = 0; i < n - 2; i++) { for (int j = i + 1; j < n - 1; j++) { for (int k = j + 1; k < n; k++) { // Check if sum of two elements equals the third element if (arr[i] + arr[j] == arr[k] || arr[i] + arr[k] == arr[j] || arr[j] + arr[k] == arr[i]) { return true; } } } } return false; } // Driver Code with Predefined Input int main() { int arr[] = {1, 2, 3, 4, 5}; int n = sizeof(arr) / sizeof(arr[0]); if (findTriplet(arr, n)) printf("true\n"); else printf("false\n"); return 0; } Java import java.util.*; public class Main { public static boolean findTriplet(int[] arr) { int n = arr.length; // Iterate through all possible triplets for (int i = 0; i < n - 2; i++) { for (int j = i + 1; j < n - 1; j++) { for (int k = j + 1; k < n; k++) { // Check if sum of two elements equals the third element if (arr[i] + arr[j] == arr[k] || arr[i] + arr[k] == arr[j] || arr[j] + arr[k] == arr[i]) { return true; } } } } return false; } // Driver Code with Predefined Input public static void main(String[] args) { int[] arr = {1, 2, 3, 4, 5}; if (findTriplet(arr)) System.out.println("true"); else System.out.println("false"); } } Python def find_triplet(arr): n = len(arr) # Iterate through all possible triplets for i in range(n - 2): for j in range(i + 1, n - 1): for k in range(j + 1, n): # Check if sum of two elements equals the third element if arr[i] + arr[j] == arr[k] or arr[i] + arr[k] == arr[j] or arr[j] + arr[k] == arr[i]: return True return False # Driver Code with Predefined Input arr = [1, 2, 3, 4, 5] if find_triplet(arr): print("true") else: print("false") C# using System; using System.Linq; class Program { static bool FindTriplet(int[] arr) { int n = arr.Length; // Iterate through all possible triplets for (int i = 0; i < n - 2; i++) { for (int j = i + 1; j < n - 1; j++) { for (int k = j + 1; k < n; k++) { // Check if sum of two elements equals the third element if (arr[i] + arr[j] == arr[k] || arr[i] + arr[k] == arr[j] || arr[j] + arr[k] == arr[i]) { return true; } } } } return false; } // Driver Code with Predefined Input static void Main() { int[] arr = {1, 2, 3, 4, 5}; if (FindTriplet(arr)) Console.WriteLine("true"); else Console.WriteLine("false"); } } JavaScript function findTriplet(arr) { const n = arr.length; // Iterate through all possible triplets for (let i = 0; i < n - 2; i++) { for (let j = i + 1; j < n - 1; j++) { for (let k = j + 1; k < n; k++) { // Check if sum of two elements equals the third element if (arr[i] + arr[j] === arr[k] || arr[i] + arr[k] === arr[j] || arr[j] + arr[k] === arr[i]) { return true; } } } } return false; } // Driver Code with Predefined Input const arr = [1, 2, 3, 4, 5]; if (findTriplet(arr)) console.log("true"); else console.log("false"); Outputtrue [Better Approach] Sorting with Binary Search for Triplet Finding - O(n^2 * log n) time and O(1) spaceThis approach first sorts the array and then uses nested loops to iterate over all possible pairs. Instead of using a brute-force third loop, it applies binary search to check if the sum of two elements exists in the remaining array. C++ #include <bits/stdc++.h> #include <iostream> using namespace std; // Function to perform binary search bool search(int sum, int start, int end, int arr[]) { while (start <= end) { int mid = (start + end) / 2; if (arr[mid] == sum) { return true; } else if (arr[mid] > sum) { end = mid - 1; } else { start = mid + 1; } } return false; } // Function to check if a triplet exists bool findTriplet(int arr[], int n) { // Sorting the array sort(arr, arr + n); // Nested loops to check for pairs for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { // Check if the sum exists using binary search if (search((arr[i] + arr[j]), j + 1, n - 1, arr)) { return true; } } } return false; } // Driver Code int main() { int arr[] = {5, 32, 1, 7, 10, 50, 19, 21, 2}; int n = sizeof(arr) / sizeof(arr[0]); cout << (findTriplet(arr, n) ? "true" : "false") << endl; return 0; } C #include <stdio.h> #include <stdlib.h> // Comparison function for qsort int cmp(const void *a, const void *b) { return (*(int*)a - *(int*)b); } // Function to perform binary search int search(int sum, int start, int end, int arr[]) { while (start <= end) { int mid = (start + end) / 2; if (arr[mid] == sum) { return 1; } else if (arr[mid] > sum) { end = mid - 1; } else { start = mid + 1; } } return 0; } // Function to check if a triplet exists int findTriplet(int arr[], int n) { // Sorting the array qsort(arr, n, sizeof(int), cmp); // Nested loops to check for pairs for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { // Check if the sum exists using binary search if (search(arr[i] + arr[j], j + 1, n - 1, arr)) { return 1; } } } return 0; } // Driver Code int main() { int arr[] = {5, 32, 1, 7, 10, 50, 19, 21, 2}; int n = sizeof(arr) / sizeof(arr[0]); printf("%s\n", findTriplet(arr, n) ? "true" : "false"); return 0; } Java import java.util.Arrays; public class TripletFinder { // Function to perform binary search public static boolean search(int sum, int start, int end, int[] arr) { while (start <= end) { int mid = (start + end) / 2; if (arr[mid] == sum) { return true; } else if (arr[mid] > sum) { end = mid - 1; } else { start = mid + 1; } } return false; } // Function to check if a triplet exists public static boolean findTriplet(int[] arr) { // Sorting the array Arrays.sort(arr); // Nested loops to check for pairs for (int i = 0; i < arr.length; i++) { for (int j = i + 1; j < arr.length; j++) { // Check if the sum exists using binary search if (search(arr[i] + arr[j], j + 1, arr.length - 1, arr)) { return true; } } } return false; } // Driver Code public static void main(String[] args) { int[] arr = {5, 32, 1, 7, 10, 50, 19, 21, 2}; System.out.println(findTriplet(arr) ? "true" : "false"); } } Python def search(sum, start, end, arr): while start <= end: mid = (start + end) // 2 if arr[mid] == sum: return True elif arr[mid] > sum: end = mid - 1 else: start = mid + 1 return False # Function to check if a triplet exists def findTriplet(arr): # Sorting the array arr.sort() # Nested loops to check for pairs n = len(arr) for i in range(n): for j in range(i + 1, n): # Check if the sum exists using binary search if search(arr[i] + arr[j], j + 1, n - 1, arr): return True return False # Driver Code arr = [5, 32, 1, 7, 10, 50, 19, 21, 2] print("true" if findTriplet(arr) else "false") C# using System; using System.Linq; class TripletFinder { // Function to perform binary search static bool Search(int sum, int start, int end, int[] arr) { while (start <= end) { int mid = (start + end) / 2; if (arr[mid] == sum) { return true; } else if (arr[mid] > sum) { end = mid - 1; } else { start = mid + 1; } } return false; } // Function to check if a triplet exists static bool FindTriplet(int[] arr) { // Sorting the array Array.Sort(arr); // Nested loops to check for pairs for (int i = 0; i < arr.Length; i++) { for (int j = i + 1; j < arr.Length; j++) { // Check if the sum exists using binary search if (Search(arr[i] + arr[j], j + 1, arr.Length - 1, arr)) { return true; } } } return false; } // Driver Code static void Main() { int[] arr = {5, 32, 1, 7, 10, 50, 19, 21, 2}; Console.WriteLine(FindTriplet(arr) ? "true" : "false"); } } JavaScript // Function to perform binary search function search(sum, start, end, arr) { while (start <= end) { let mid = Math.floor((start + end) / 2); if (arr[mid] === sum) { return true; } else if (arr[mid] > sum) { end = mid - 1; } else { start = mid + 1; } } return false; } // Function to check if a triplet exists function findTriplet(arr) { // Sorting the array arr.sort((a, b) => a - b); // Nested loops to check for pairs for (let i = 0; i < arr.length; i++) { for (let j = i + 1; j < arr.length; j++) { // Check if the sum exists using binary search if (search(arr[i] + arr[j], j + 1, arr.length - 1, arr)) { return true; } } } return false; } // Driver Code let arr = [5, 32, 1, 7, 10, 50, 19, 21, 2]; console.log(findTriplet(arr) ? "true" : "false"); Outputtrue [Expected Approach] Two-Pointer Technique - O(n^2) time and O(1) spaceThis approach first sorts the array and then uses the two-pointer technique to find a triplet where the sum of two numbers equals the third number. Instead of checking all possible triplets using three loops, it reduces the search space by adjusting two pointers (left and right) while iterating through the array. This makes the approach more efficient compared to the naive method. C++ #include <bits/stdc++.h> using namespace std; bool findTriplet(vector<int>& arr) { int n = arr.size(); // Sort the array sort(arr.begin(), arr.end()); // Iterate through the array for (int i = 2; i < n; i++) { int left = 0, right = i - 1; while (left < right) { int sum = arr[left] + arr[right]; if (sum == arr[i]) return true; else if (sum < arr[i]) left++; else right--; } } return false; } // Driver Code with Predefined Input int main() { vector<int> arr = {1, 2, 3, 4, 5}; if (findTriplet(arr)) cout << "true" << endl; else cout << "false" << endl; return 0; } C #include <stdio.h> #include <stdlib.h> #include <stdbool.h> // Function to compare two integers for qsort int compare(const void *a, const void *b) { return (*(int*)a - *(int*)b); } bool findTriplet(int arr[], int n) { // Sort the array qsort(arr, n, sizeof(int), compare); // Iterate through the array for (int i = 2; i < n; i++) { int left = 0, right = i - 1; while (left < right) { int sum = arr[left] + arr[right]; if (sum == arr[i]) return true; else if (sum < arr[i]) left++; else right--; } } return false; } // Driver Code with Predefined Input int main() { int arr[] = {1, 2, 3, 4, 5}; int n = sizeof(arr) / sizeof(arr[0]); if (findTriplet(arr, n)) printf("true\n"); else printf("false\n"); return 0; } Java // Java implementation to find if there exists a triplet in the array import java.util.Arrays; import java.util.List; public class TripletFinder { public static boolean findTriplet(List<Integer> arr) { int n = arr.size(); // Sort the array Integer[] array = arr.toArray(new Integer[0]); Arrays.sort(array); // Iterate through the array for (int i = 2; i < n; i++) { int left = 0, right = i - 1; while (left < right) { int sum = array[left] + array[right]; if (sum == array[i]) return true; else if (sum < array[i]) left++; else right--; } } return false; } // Driver Code with Predefined Input public static void main(String[] args) { List<Integer> arr = Arrays.asList(1, 2, 3, 4, 5); if (findTriplet(arr)) System.out.println("true"); else System.out.println("false"); } } Python # Function to find if there exists a triplet in the array def find_triplet(arr): n = len(arr) # Sort the array arr.sort() # Iterate through the array for i in range(2, n): left, right = 0, i - 1 while left < right: sum = arr[left] + arr[right] if sum == arr[i]: return True elif sum < arr[i]: left += 1 else: right -= 1 return False # Driver Code with Predefined Input arr = [1, 2, 3, 4, 5] if find_triplet(arr): print("true") else: print("false") C# // C# implementation to find if there exists a triplet in the array using System; using System.Collections.Generic; using System.Linq; public class TripletFinder { public static bool FindTriplet(List<int> arr) { int n = arr.Count; // Sort the array arr.Sort(); // Iterate through the array for (int i = 2; i < n; i++) { int left = 0, right = i - 1; while (left < right) { int sum = arr[left] + arr[right]; if (sum == arr[i]) return true; else if (sum < arr[i]) left++; else right--; } } return false; } // Driver Code with Predefined Input public static void Main(string[] args) { List<int> arr = new List<int> { 1, 2, 3, 4, 5 }; if (FindTriplet(arr)) Console.WriteLine("true"); else Console.WriteLine("false"); } } JavaScript // JavaScript implementation to find if there exists a triplet in the array function findTriplet(arr) { const n = arr.length; // Sort the array arr.sort((a, b) => a - b); // Iterate through the array for (let i = 2; i < n; i++) { let left = 0, right = i - 1; while (left < right) { const sum = arr[left] + arr[right]; if (sum === arr[i]) return true; else if (sum < arr[i]) left++; else right--; } } return false; } // Driver Code with Predefined Input const arr = [1, 2, 3, 4, 5]; if (findTriplet(arr)) console.log("true"); else console.log("false"); Outputtrue Comment More infoAdvertise with us Next Article Analysis of Algorithms M msdeep14 Improve Article Tags : Searching DSA Arrays Amazon Arcesium two-pointer-algorithm +2 More Practice Tags : AmazonArcesiumArraysSearchingtwo-pointer-algorithm +1 More Similar Reads Basics & PrerequisitesLogic Building ProblemsLogic building is about creating clear, step-by-step methods to solve problems using simple rules and principles. Itâs the heart of coding, enabling programmers to think, reason, and arrive at smart solutions just like we do.Here are some tips for improving your programming logic: Understand the pro 2 min read Analysis of AlgorithmsAnalysis of Algorithms is a fundamental aspect of computer science that involves evaluating performance of algorithms and programs. Efficiency is measured in terms of time and space.BasicsWhy is Analysis Important?Order of GrowthAsymptotic Analysis Worst, Average and Best Cases Asymptotic NotationsB 1 min read Data StructuresArray Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous 3 min read String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut 2 min read Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The 2 min read Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List: 2 min read Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first 2 min read Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems 2 min read Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most 4 min read Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of 3 min read Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this 15+ min read AlgorithmsSearching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input 2 min read Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ 3 min read Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution 14 min read Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get 3 min read Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net 3 min read Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of 3 min read Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit 4 min read AdvancedSegment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree 3 min read Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i 2 min read GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br 2 min read Interview PreparationInterview Corner: All Resources To Crack Any Tech InterviewThis article serves as your one-stop guide to interview preparation, designed to help you succeed across different experience levels and company expectations. Here is what you should expect in a Tech Interview, please remember the following points:Tech Interview Preparation does not have any fixed s 3 min read GfG160 - 160 Days of Problem SolvingAre you preparing for technical interviews and would like to be well-structured to improve your problem-solving skills? Well, we have good news for you! GeeksforGeeks proudly presents GfG160, a 160-day coding challenge starting on 15th November 2024. In this event, we will provide daily coding probl 3 min read Practice ProblemGeeksforGeeks Practice - Leading Online Coding PlatformGeeksforGeeks Practice is an online coding platform designed to help developers and students practice coding online and sharpen their programming skills with the following features. GfG 160: This consists of most popular interview problems organized topic wise and difficulty with with well written e 6 min read Problem of The Day - Develop the Habit of CodingDo you find it difficult to develop a habit of Coding? If yes, then we have a most effective solution for you - all you geeks need to do is solve one programming problem each day without any break, and BOOM, the results will surprise you! Let us tell you how:Suppose you commit to improve yourself an 5 min read Like