Find the only non-repeating element in a given array
Last Updated :
04 Nov, 2023
Given an array A[] consisting of N (1 ? N ? 105) positive integers, the task is to find the only array element with a single occurrence.
Note: It is guaranteed that only one such element exists in the array.
Examples:
Input: A[] = {1, 1, 2, 3, 3}
Output: 2
Explanation:
Distinct array elements are {1, 2, 3}.
Frequency of these elements are {2, 1, 2} respectively.
Input : A[] = {1, 1, 1, 2, 2, 3, 5, 3, 4, 4}
Output : 5
Approach: Follow the steps below to solve the problem
- Traverse the array
- Use an Unordered Map to store the frequency of array elements.
- Traverse the Map and find the element with frequency 1 and print that element.
Below is the implementation of the above approach:
C++
// C++ implementation of the
// above approach
#include <bits/stdc++.h>
using namespace std;
// Function call to find
// element in A[] with frequency = 1
void CalcUnique(int A[], int N)
{
// Stores frequency of
// array elements
unordered_map<int, int> freq;
// Traverse the array
for (int i = 0; i < N; i++) {
// Update frequency of A[i]
freq[A[i]]++;
}
// Traverse the Map
for (int i = 0; i < N; i++) {
// If non-repeating element
// is found
if (freq[A[i]] == 1) {
cout << A[i];
return;
}
}
}
// Driver Code
int main()
{
int A[] = { 1, 1, 2, 3, 3 };
int N = sizeof(A) / sizeof(A[0]);
CalcUnique(A, N);
return 0;
}
Java
// Java implementation of the
// above approach
import java.util.*;
class GFG
{
// Function call to find
// element in A[] with frequency = 1
static void CalcUnique(int A[], int N)
{
// Stores frequency of
// array elements
HashMap<Integer,Integer> freq = new HashMap<Integer,Integer>();
// Traverse the array
for (int i = 0; i < N; i++)
{
// Update frequency of A[i]
if(freq.containsKey(A[i]))
{
freq.put(A[i], freq.get(A[i]) + 1);
}
else
{
freq.put(A[i], 1);
}
}
// Traverse the Map
for (int i = 0; i < N; i++)
{
// If non-repeating element
// is found
if (freq.containsKey(A[i])&&freq.get(A[i]) == 1)
{
System.out.print(A[i]);
return;
}
}
}
// Driver Code
public static void main(String[] args)
{
int A[] = { 1, 1, 2, 3, 3 };
int N = A.length;
CalcUnique(A, N);
}
}
// This code is contributed by 29AjayKumar
Python3
# Python 3 implementation of the
# above approach
from collections import defaultdict
# Function call to find
# element in A[] with frequency = 1
def CalcUnique(A, N):
# Stores frequency of
# array elements
freq = defaultdict(int)
# Traverse the array
for i in range(N):
# Update frequency of A[i]
freq[A[i]] += 1
# Traverse the Map
for i in range(N):
# If non-repeating element
# is found
if (freq[A[i]] == 1):
print(A[i])
return
# Driver Code
if __name__ == "__main__":
A = [1, 1, 2, 3, 3]
N = len(A)
CalcUnique(A, N)
# This code is contributed by chitranayal.
C#
// C# implementation of the
// above approach
using System;
using System.Collections.Generic;
public class GFG
{
// Function call to find
// element in []A with frequency = 1
static void CalcUnique(int []A, int N)
{
// Stores frequency of
// array elements
Dictionary<int,int> freq = new Dictionary<int,int>();
// Traverse the array
for (int i = 0; i < N; i++)
{
// Update frequency of A[i]
if(freq.ContainsKey(A[i]))
{
freq[A[i]] = freq[A[i]] + 1;
}
else
{
freq.Add(A[i], 1);
}
}
// Traverse the Map
for (int i = 0; i < N; i++)
{
// If non-repeating element
// is found
if (freq.ContainsKey(A[i]) && freq[A[i]] == 1)
{
Console.Write(A[i]);
return;
}
}
}
// Driver Code
public static void Main(String[] args)
{
int []A = { 1, 1, 2, 3, 3 };
int N = A.Length;
CalcUnique(A, N);
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// JavaScript implementation of the
// above approach
// Function call to find
// element in A[] with frequency = 1
function CalcUnique(A, N)
{
// Stores frequency of
// array elements
var freq = new Map();
// Traverse the array
for (var i = 0; i < N; i++) {
// Update frequency of A[i]
if(freq.has(A[i]))
{
freq.set(A[i], freq.get(A[i])+1);
}
else
{
freq.set(A[i],1);
}
}
// Traverse the Map
for (var i = 0; i < N; i++) {
// If non-repeating element
// is found
if (freq.get(A[i]) == 1) {
document.write( A[i]);
return;
}
}
}
// Driver Code
var A = [1, 1, 2, 3, 3 ];
var N = A.length;
CalcUnique(A, N);
</script>
Time Complexity : O(N)
Auxiliary Space : O(N)
Another Approach: Using Built-in Functions:
- Calculate the frequencies using Built-In function.
- Traverse the array and find the element with frequency 1 and print it.
Below is the implementation:
C++
#include <iostream>
#include <unordered_map>
using namespace std;
// Function call to find element in A[] with frequency = 1
void CalcUnique(int A[], int N)
{
// Calculate frequency of all array elements
unordered_map<int, int> freq;
// Traverse the Array
for (int i = 0; i < N; i++)
{
// Update frequency of each array element in the map
int count = 1;
if (freq.count(A[i])) {
count = freq[A[i]];
count++;
}
freq[A[i]] = count;
}
// Traverse the Array
for (int i = 0; i < N; i++)
{
// If non-repeating element is found
if (freq[A[i]] == 1) {
cout << A[i] << endl;
return;
}
}
}
// Driver Code
int main()
{
int A[] = { 1, 1, 2, 3, 3 };
int N = sizeof(A) / sizeof(A[0]);
CalcUnique(A, N);
return 0;
}
Java
//Java code:
import java.util.Map;
import java.util.HashMap;
class Main{
// Function call to find
// element in A[] with frequency = 1
public static void CalcUnique(int A[], int N)
{
// Calculate frequency of
// all array elements
Map<Integer, Integer> freq = new HashMap<Integer, Integer>();
// Traverse the Array
for (int i=0; i<N; i++)
{
// Update frequency of each
// array element in the map
int count = 1;
if(freq.containsKey(A[i]))
{
count = freq.get(A[i]);
count++;
}
freq.put(A[i], count);
}
// Traverse the Array
for (int i=0; i<N; i++)
{
// If non-repeating element
// is found
if (freq.get(A[i]) == 1)
{
System.out.println(A[i]);
return;
}
}
}
// Driver Code
public static void main(String args[])
{
int A[] = {1, 1, 2, 3, 3};
int N = A.length;
CalcUnique(A, N);
}}
Python3
# Python 3 implementation of the
# above approach
from collections import Counter
# Function call to find
# element in A[] with frequency = 1
def CalcUnique(A, N):
# Calculate frequency of
# all array elements
freq = Counter(A)
# Traverse the Array
for i in A:
# If non-repeating element
# is found
if (freq[i] == 1):
print(i)
return
# Driver Code
if __name__ == "__main__":
A = [1, 1, 2, 3, 3]
N = len(A)
CalcUnique(A, N)
# This code is contributed by vikkycirus
C#
using System;
using System.Collections.Generic;
public class MainClass {
// Function call to find element in A[] with frequency =
// 1
static void CalcUnique(int[] A, int N)
{
// Calculate frequency of all array elements
Dictionary<int, int> freq
= new Dictionary<int, int>();
// Traverse the Array
for (int i = 0; i < N; i++) {
// Update frequency of each array element in the
// dictionary
if (freq.ContainsKey(A[i])) {
freq[A[i]]++;
}
else {
freq[A[i]] = 1;
}
}
// Traverse the Array
for (int i = 0; i < N; i++) {
// If non-repeating element is found
if (freq[A[i]] == 1) {
Console.WriteLine(A[i]);
return;
}
}
}
// Driver Code
public static void Main()
{
int[] A = { 1, 1, 2, 3, 3 };
int N = A.Length;
CalcUnique(A, N);
}
}
JavaScript
<script>
// Function call to find
// element in A[] with frequency = 1
function CalcUnique(A) {
// Calculate frequency of
// all array elements
let freq = A.reduce((acc, curr) => {
if (acc[curr]) {
acc[curr]++;
} else {
acc[curr] = 1;
}
return acc;
}, {});
// Traverse the Array
for (let i = 0; i < A.length; i++) {
// If non-repeating element
// is found
if (freq[A[i]] === 1) {
console.log(A[i]);
return;
}
}
}
// Driver Code
const A = [1, 1, 2, 3, 3];
CalcUnique(A);
</script>
Time Complexity: O(N)
Auxiliary Space: O(N)
Another Approach: Using Sorting
The idea is to sort the array and find which element occurs only once by traversing the array.
Steps to implement this Approach-
- Sort the given array
- Then traverse from starting to the end of the array
- Since the array is already sorted that's why repeating element will be consecutive
- So in that whole array, we will find which element occurred only once. That is our required answer
Code-
C++
#include <bits/stdc++.h>
using namespace std;
// Function call to find single non-repeating element
void CalcUnique(int arr[], int N)
{
//Sort the Array
sort(arr,arr+N);
int temp=INT_MIN;
int count=0;
// Traverse the Array
for(int i=0;i<N;i++){
if(arr[i]==temp){count++;}
else{
if(count==1){
cout<<temp<<endl;
return;
}
temp=arr[i];
count=1;
}
}
//If yet not returned from the function then last element is the only non-repeating element
cout<<arr[N-1]<<endl;
}
// Driver Code
int main()
{
int arr[] = {1, 1, 2, 3, 3};
int N = sizeof(arr) / sizeof(arr[0]);
CalcUnique(arr, N);
return 0;
}
Java
import java.util.*;
public class Main {
// Function call to find single non-repeating element
public static void CalcUnique(int[] arr, int N) {
// Sort the Array
Arrays.sort(arr);
int temp=Integer.MIN_VALUE;
int count=0;
// Traverse the Array
for(int i=0;i<N;i++){
if(arr[i]==temp){
count++;
} else {
if(count==1){
System.out.println(temp);
return;
}
temp=arr[i];
count=1;
}
}
// If yet not returned from the function then last element is the only non-repeating element
System.out.println(arr[N-1]);
}
// Driver Code
public static void main(String[] args) {
int[] arr = {1, 1, 2, 3, 3};
int N = arr.length;
CalcUnique(arr, N);
}
}
Python3
def calc_unique(arr, N):
# Sort the array
arr.sort()
temp = None
count = 0
# Traverse the array
for i in range(N):
if arr[i] == temp:
count += 1
else:
if count == 1:
print(temp)
return
temp = arr[i]
count = 1
# If yet not returned from the function,
# then the last element is the only non-repeating element
print(arr[N-1])
# Driver Code
if __name__ == "__main__":
arr = [1, 1, 2, 3, 3]
N = len(arr)
calc_unique(arr, N)
C#
using System;
using System.Linq;
class Program
{
// Function to find the single non-repeating element
static void CalcUnique(int[] arr, int N)
{
// Sort the array
Array.Sort(arr);
int temp = int.MinValue;
int count = 0;
for (int i = 0; i < N; i++)
{
// If the current element is equal to the previous element, increase the count
if (arr[i] == temp)
{
count++;
}
else
{
// If the count is 1, it means the previous element is the non-repeating element
if (count == 1)
{
Console.WriteLine(temp);
return;
}
// Update the current element and reset the count
temp = arr[i];
count = 1;
}
}
// If not returned from the function, then the last element is the only non-repeating element
Console.WriteLine(arr[N - 1]);
}
static void Main(string[] args)
{
int[] arr = { 1, 1, 2, 3, 3 };
int N = arr.Length;
CalcUnique(arr, N);
}
}
JavaScript
// Function to find single non-repeating element
function calcUnique(arr) {
// Sort the Array
arr.sort((a, b) => a - b);
let temp = Number.MIN_SAFE_INTEGER;
let count = 0;
// Traverse the Array
for(let i = 0; i < arr.length; i++) {
if(arr[i] === temp) {
count++;
} else {
if(count === 1) {
console.log(temp);
return;
}
temp = arr[i];
count = 1;
}
}
// If not returned from the function yet, then the last element is the only non-repeating element
console.log(arr[arr.length - 1]);
}
// Driver Code
const arr = [1, 1, 2, 3, 3];
calcUnique(arr);
Time Complexity: O(NlogN)+O(N)=O(NlogN), O(NlogN) in sorting and O(N) in traversing the array
Auxiliary Space: O(1), because no extra space has been taken
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms
DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort
QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials
Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph
Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation
Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm
Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Data Structures Tutorial
Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all
Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort
Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read