Find the maximum subarray XOR in a given array
Last Updated :
17 Feb, 2023
Given an array of integers. The task is to find the maximum subarray XOR value in the given array.
Examples:
Input: arr[] = {1, 2, 3, 4}
Output: 7
Explanation: The subarray {3, 4} has maximum XOR value
Input: arr[] = {8, 1, 2, 12, 7, 6}
Output: 15
Explanation: The subarray {1, 2, 12} has maximum XOR value
Input: arr[] = {4, 6}
Output: 6
Explanation: The subarray {6} has maximum XOR value
Naive Approach: Below is the idea to solve the problem:
Create all possible subarrays and calculate the XOR of the subarrays. The maximum among them will be the required answer.
Follow the steps mentioned below to implement the idea:
- Iterate from i = 0 to N-1:
- Initialize a variable (say curr_xor = 0) to store the XOR value of subarrays starting from i
- Run a nested loop from j = i to N-1:
- The value j determines the ending point for the current subarray starting from i.
- Update curr_xor by performing XOR of curr_xor with arr[j].
- If the value is greater than the maximum then update the maximum value also.
- The maximum value is the required answer.
Below is the Implementation of the above approach:
C++
// A simple C++ program to find max subarray XOR
#include<bits/stdc++.h>
using namespace std;
int maxSubarrayXOR(int arr[], int n)
{
int ans = INT_MIN; // Initialize result
// Pick starting points of subarrays
for (int i=0; i<n; i++)
{
int curr_xor = 0; // to store xor of current subarray
// Pick ending points of subarrays starting with i
for (int j=i; j<n; j++)
{
curr_xor = curr_xor ^ arr[j];
ans = max(ans, curr_xor);
}
}
return ans;
}
// Driver program to test above functions
int main()
{
int arr[] = {8, 1, 2, 12};
int n = sizeof(arr)/sizeof(arr[0]);
cout << "Max subarray XOR is " << maxSubarrayXOR(arr, n);
return 0;
}
Java
// A simple Java program to find max subarray XOR
class GFG {
static int maxSubarrayXOR(int arr[], int n)
{
int ans = Integer.MIN_VALUE; // Initialize result
// Pick starting points of subarrays
for (int i=0; i<n; i++)
{
// to store xor of current subarray
int curr_xor = 0;
// Pick ending points of subarrays starting with i
for (int j=i; j<n; j++)
{
curr_xor = curr_xor ^ arr[j];
ans = Math.max(ans, curr_xor);
}
}
return ans;
}
// Driver program to test above functions
public static void main(String args[])
{
int arr[] = {8, 1, 2, 12};
int n = arr.length;
System.out.println("Max subarray XOR is " +
maxSubarrayXOR(arr, n));
}
}
//This code is contributed by Sumit Ghosh
Python3
# A simple Python program
# to find max subarray XOR
def maxSubarrayXOR(arr,n):
ans = -2147483648 #Initialize result
# Pick starting points of subarrays
for i in range(n):
# to store xor of current subarray
curr_xor = 0
# Pick ending points of
# subarrays starting with i
for j in range(i,n):
curr_xor = curr_xor ^ arr[j]
ans = max(ans, curr_xor)
return ans
# Driver code
arr = [8, 1, 2, 12]
n = len(arr)
print("Max subarray XOR is ",
maxSubarrayXOR(arr, n))
# This code is contributed
# by Anant Agarwal.
C#
// A simple C# program to find
// max subarray XOR
using System;
class GFG
{
// Function to find max subarray
static int maxSubarrayXOR(int []arr, int n)
{
int ans = int.MinValue;
// Initialize result
// Pick starting points of subarrays
for (int i = 0; i < n; i++)
{
// to store xor of current subarray
int curr_xor = 0;
// Pick ending points of
// subarrays starting with i
for (int j = i; j < n; j++)
{
curr_xor = curr_xor ^ arr[j];
ans = Math.Max(ans, curr_xor);
}
}
return ans;
}
// Driver code
public static void Main()
{
int []arr = {8, 1, 2, 12};
int n = arr.Length;
Console.WriteLine("Max subarray XOR is " +
maxSubarrayXOR(arr, n));
}
}
// This code is contributed by Sam007.
PHP
<?php
// A simple PHP program to
// find max subarray XOR
function maxSubarrayXOR($arr, $n)
{
// Initialize result
$ans = PHP_INT_MIN;
// Pick starting points
// of subarrays
for ($i = 0; $i < $n; $i++)
{
// to store xor of
// current subarray
$curr_xor = 0;
// Pick ending points of
// subarrays starting with i
for ($j = $i; $j < $n; $j++)
{
$curr_xor = $curr_xor ^ $arr[$j];
$ans = max($ans, $curr_xor);
}
}
return $ans;
}
// Driver Code
$arr = array(8, 1, 2, 12);
$n = count($arr);
echo "Max subarray XOR is "
, maxSubarrayXOR($arr, $n);
// This code is contributed by anuj_67.
?>
JavaScript
<script>
// A simple Javascript program to find
// max subarray XOR
function maxSubarrayXOR(arr, n)
{
// Initialize result
let ans = Number.MIN_VALUE;
// Pick starting points of subarrays
for(let i = 0; i < n; i++)
{
// To store xor of current subarray
let curr_xor = 0;
// Pick ending points of subarrays
// starting with i
for(let j = i; j < n; j++)
{
curr_xor = curr_xor ^ arr[j];
ans = Math.max(ans, curr_xor);
}
}
return ans;
}
// Driver code
let arr = [ 8, 1, 2, 12 ];
let n = arr.length;
document.write("Max subarray XOR is " +
maxSubarrayXOR(arr, n));
// This code is contributed by divyesh072019
</script>
OutputMax subarray XOR is 15
Time Complexity: O(N2).
Auxiliary Space: O(1)
Find the maximum subarray XOR in a given array using trie Data Structure.
Maximize the xor subarray by using trie data structure to find the binary inverse of current prefix xor inorder to set the left most unset bits and maximize the value.
Follow the below steps to Implement the idea:
- Create an empty Trie. Every node of Trie is going to contain two children, for 0 and 1 values of a bit.
- Initialize pre_xor = 0 and insert into the Trie, Initialize result = INT_MIN
- Traverse the given array and do the following for every array element arr[i].
- pre_xor = pre_xor ^ arr[i], pre_xor now contains xor of elements from arr[0] to arr[i].
- Query the maximum xor value ending with arr[i] from Trie.
- Update the result if the value obtained above is more than the current value of the result.
Illustration:
It can be observed from the above algorithm that we build a Trie that contains XOR of all prefixes of given array. To find the maximum XOR subarray ending with arr[i], there may be two cases.
- The prefix itself has the maximum XOR value ending with arr[i]. For example if i=2 in {8, 2, 1, 12}, then the maximum subarray xor ending with arr[2] is the whole prefix.
- Remove some prefix (ending at index from 0 to i-1). For example if i=3 in {8, 2, 1, 12}, then the maximum subarray xor ending with arr[3] starts with arr[1] and we need to remove arr[0].
- To find the prefix to be removed, find the entry in Trie that has maximum XOR value with current prefix. If we do XOR of such previous prefix with current prefix, get the maximum XOR value ending with arr[i].
- If there is no prefix to be removed (case i), then we return 0 (that's why we inserted 0 in Trie).
Below is the implementation of the above idea :
C++
// C++ program for a Trie based O(n) solution to find max
// subarray XOR
#include<bits/stdc++.h>
using namespace std;
// Assumed int size
#define INT_SIZE 32
// A Trie Node
struct TrieNode
{
int value; // Only used in leaf nodes
TrieNode *arr[2];
};
// Utility function to create a Trie node
TrieNode *newNode()
{
TrieNode *temp = new TrieNode;
temp->value = 0;
temp->arr[0] = temp->arr[1] = NULL;
return temp;
}
// Inserts pre_xor to trie with given root
void insert(TrieNode *root, int pre_xor)
{
TrieNode *temp = root;
// Start from the msb, insert all bits of
// pre_xor into Trie
for (int i=INT_SIZE-1; i>=0; i--)
{
// Find current bit in given prefix
bool val = pre_xor & (1<<i);
// Create a new node if needed
if (temp->arr[val] == NULL)
temp->arr[val] = newNode();
temp = temp->arr[val];
}
// Store value at leaf node
temp->value = pre_xor;
}
// Finds the maximum XOR ending with last number in
// prefix XOR 'pre_xor' and returns the XOR of this maximum
// with pre_xor which is maximum XOR ending with last element
// of pre_xor.
int query(TrieNode *root, int pre_xor)
{
TrieNode *temp = root;
for (int i=INT_SIZE-1; i>=0; i--)
{
// Find current bit in given prefix
bool val = pre_xor & (1<<i);
// Traverse Trie, first look for a
// prefix that has opposite bit
if (temp->arr[1-val]!=NULL)
temp = temp->arr[1-val];
// If there is no prefix with opposite
// bit, then look for same bit.
else if (temp->arr[val] != NULL)
temp = temp->arr[val];
}
return pre_xor^(temp->value);
}
// Returns maximum XOR value of a subarray in arr[0..n-1]
int maxSubarrayXOR(int arr[], int n)
{
// Create a Trie and insert 0 into it
TrieNode *root = newNode();
insert(root, 0);
// Initialize answer and xor of current prefix
int result = INT_MIN, pre_xor =0;
// Traverse all input array element
for (int i=0; i<n; i++)
{
// update current prefix xor and insert it into Trie
pre_xor = pre_xor^arr[i];
insert(root, pre_xor);
// Query for current prefix xor in Trie and update
// result if required
result = max(result, query(root, pre_xor));
}
return result;
}
// Driver program to test above functions
int main()
{
int arr[] = {8, 1, 2, 12};
int n = sizeof(arr)/sizeof(arr[0]);
cout << "Max subarray XOR is " << maxSubarrayXOR(arr, n);
return 0;
}
Java
// Java program for a Trie based O(n) solution to
// find max subarray XOR
class GFG
{
// Assumed int size
static final int INT_SIZE = 32;
// A Trie Node
static class TrieNode
{
int value; // Only used in leaf nodes
TrieNode[] arr = new TrieNode[2];
public TrieNode() {
value = 0;
arr[0] = null;
arr[1] = null;
}
}
static TrieNode root;
// Inserts pre_xor to trie with given root
static void insert(int pre_xor)
{
TrieNode temp = root;
// Start from the msb, insert all bits of
// pre_xor into Trie
for (int i=INT_SIZE-1; i>=0; i--)
{
// Find current bit in given prefix
int val = (pre_xor & (1<<i)) >=1 ? 1 : 0;
// Create a new node if needed
if (temp.arr[val] == null)
temp.arr[val] = new TrieNode();
temp = temp.arr[val];
}
// Store value at leaf node
temp.value = pre_xor;
}
// Finds the maximum XOR ending with last number in
// prefix XOR 'pre_xor' and returns the XOR of this
// maximum with pre_xor which is maximum XOR ending
// with last element of pre_xor.
static int query(int pre_xor)
{
TrieNode temp = root;
for (int i=INT_SIZE-1; i>=0; i--)
{
// Find current bit in given prefix
int val = (pre_xor & (1<<i)) >= 1 ? 1 : 0;
// Traverse Trie, first look for a
// prefix that has opposite bit
if (temp.arr[1-val] != null)
temp = temp.arr[1-val];
// If there is no prefix with opposite
// bit, then look for same bit.
else if (temp.arr[val] != null)
temp = temp.arr[val];
}
return pre_xor^(temp.value);
}
// Returns maximum XOR value of a subarray in
// arr[0..n-1]
static int maxSubarrayXOR(int arr[], int n)
{
// Create a Trie and insert 0 into it
root = new TrieNode();
insert(0);
// Initialize answer and xor of current prefix
int result = Integer.MIN_VALUE;
int pre_xor =0;
// Traverse all input array element
for (int i=0; i<n; i++)
{
// update current prefix xor and insert it
// into Trie
pre_xor = pre_xor^arr[i];
insert(pre_xor);
// Query for current prefix xor in Trie and
// update result if required
result = Math.max(result, query(pre_xor));
}
return result;
}
// Driver program to test above functions
public static void main(String args[])
{
int arr[] = {8, 1, 2, 12};
int n = arr.length;
System.out.println("Max subarray XOR is " +
maxSubarrayXOR(arr, n));
}
}
// This code is contributed by Sumit Ghosh
Python3
"""Python implementation for a Trie based solution
to find max subArray XOR"""
# Structure of Trie Node
class Node:
def __init__(self, data):
self.data = data
# left node for 0
self.left = None
# right node for 1
self.right = None
# Class for implementing Trie
class Trie:
def __init__(self):
self.root = Node(0)
# Insert pre_xor to trie with given root
def insert(self, pre_xor):
self.temp = self.root
# Start from msb, insert all bits of pre_xor
# into the Trie
for i in range(31, -1, -1):
# Find current bit in prefix sum
val = pre_xor & (1<<i)
if val :
# Create new node if needed
if not self.temp.right:
self.temp.right = Node(0)
self.temp = self.temp.right
if not val:
# Create new node if needed
if not self.temp.left:
self.temp.left = Node(0)
self.temp = self.temp.left
# Store value at leaf node
self.temp.data = pre_xor
# Find the maximum xor ending with last number
# in prefix XOR and return the XOR of this
def query(self, xor):
self.temp = self.root
for i in range(31, -1, -1):
# Find the current bit in prefix xor
val = xor & (1<<i)
# Traverse the trie, first look for opposite bit
# and then look for same bit
if val:
if self.temp.left:
self.temp = self.temp.left
elif self.temp.right:
self.temp = self.temp.right
else:
if self.temp.right:
self.temp = self.temp.right
elif self.temp.left:
self.temp = self.temp.left
return xor ^ self.temp.data
# Returns maximum XOR value of subarray
def maxSubArrayXOR(self, n, Arr):
# Insert 0 in the trie
self.insert(0)
# Initialize result and pre_xor
result = -float('inf')
pre_xor = 0
# Traverse all input array element
for i in range(n):
# Update current prefix xor and
# insert it into Trie
pre_xor = pre_xor ^ Arr[i]
self.insert(pre_xor)
# Query for current prefix xor
# in Trie and update result
result = max(result, self.query(pre_xor))
return result
# Driver code
if __name__ == "__main__":
Arr = [8, 1, 2, 12]
n = len(Arr)
trie = Trie()
print("Max subarray XOR is", end = ' ')
print(trie.maxSubArrayXOR(n, Arr))
# This code is contributed by chaudhary_19
C#
using System;
// C# program for a Trie based O(n) solution to
// find max subarray XOR
public class GFG
{
// Assumed int size
public const int INT_SIZE = 32;
// A Trie Node
public class TrieNode
{
public int value; // Only used in leaf nodes
public TrieNode[] arr = new TrieNode[2];
public TrieNode()
{
value = 0;
arr[0] = null;
arr[1] = null;
}
}
public static TrieNode root;
// Inserts pre_xor to trie with given root
public static void insert(int pre_xor)
{
TrieNode temp = root;
// Start from the msb, insert all bits of
// pre_xor into Trie
for (int i = INT_SIZE-1; i >= 0; i--)
{
// Find current bit in given prefix
int val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
// Create a new node if needed
if (temp.arr[val] == null)
{
temp.arr[val] = new TrieNode();
}
temp = temp.arr[val];
}
// Store value at leaf node
temp.value = pre_xor;
}
// Finds the maximum XOR ending with last number in
// prefix XOR 'pre_xor' and returns the XOR of this
// maximum with pre_xor which is maximum XOR ending
// with last element of pre_xor.
public static int query(int pre_xor)
{
TrieNode temp = root;
for (int i = INT_SIZE-1; i >= 0; i--)
{
// Find current bit in given prefix
int val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
// Traverse Trie, first look for a
// prefix that has opposite bit
if (temp.arr[1 - val] != null)
{
temp = temp.arr[1 - val];
}
// If there is no prefix with opposite
// bit, then look for same bit.
else if (temp.arr[val] != null)
{
temp = temp.arr[val];
}
}
return pre_xor ^ (temp.value);
}
// Returns maximum XOR value of a subarray in
// arr[0..n-1]
public static int maxSubarrayXOR(int[] arr, int n)
{
// Create a Trie and insert 0 into it
root = new TrieNode();
insert(0);
// Initialize answer and xor of current prefix
int result = int.MinValue;
int pre_xor = 0;
// Traverse all input array element
for (int i = 0; i < n; i++)
{
// update current prefix xor and insert it
// into Trie
pre_xor = pre_xor ^ arr[i];
insert(pre_xor);
// Query for current prefix xor in Trie and
// update result if required
result = Math.Max(result, query(pre_xor));
}
return result;
}
// Driver program to test above functions
public static void Main(string[] args)
{
int[] arr = new int[] {8, 1, 2, 12};
int n = arr.Length;
Console.WriteLine("Max subarray XOR is " + maxSubarrayXOR(arr, n));
}
}
// This code is contributed by Shrikant13
JavaScript
// JavaScript program for a Trie based O(n) solution to find max subarray XOR
// Assumed int size
const INT_SIZE = 32;
// A Trie Node
class TrieNode {
constructor() {
this.value = 0; // Only used in leaf nodes
this.arr = [null, null];
}
}
let root;
// Inserts pre_xor to trie with given root
function insert(pre_xor) {
let temp = root;
// Start from the msb, insert all bits of
// pre_xor into Trie
for (let i = INT_SIZE - 1; i >= 0; i--) {
// Find current bit in given prefix
let val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
// Create a new node if needed
if (temp.arr[val] === null) {
temp.arr[val] = new TrieNode();
}
temp = temp.arr[val];
}
// Store value at leaf node
temp.value = pre_xor;
}
// Finds the maximum XOR ending with last number in
// prefix XOR 'pre_xor' and returns the XOR of this
// maximum with pre_xor which is maximum XOR ending
// with last element of pre_xor.
function query(pre_xor) {
let temp = root;
for (let i = INT_SIZE - 1; i >= 0; i--) {
// Find current bit in given prefix
let val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
// Traverse Trie, first look for a
// prefix that has opposite bit
if (temp.arr[1 - val] !== null) {
temp = temp.arr[1 - val];
}
// If there is no prefix with opposite
// bit, then look for same bit.
else if (temp.arr[val] !== null) {
temp = temp.arr[val];
}
}
return pre_xor ^ temp.value;
}
// Returns maximum XOR value of a subarray in arr[0..n-1]
function maxSubarrayXOR(arr, n) {
// Create a Trie and insert 0 into it
root = new TrieNode();
insert(0);
// Initialize answer and xor of current prefix
let result = Number.MIN_SAFE_INTEGER;
let pre_xor = 0;
// Traverse all input array element
for (let i = 0; i < n; i++) {
// update current prefix xor and insert it
// into Trie
pre_xor ^= arr[i];
insert(pre_xor);
// Query for current prefix xor in Trie and
// update result if required
result = Math.max(result, query(pre_xor));
}
return result;
}
// Driver program to test above functions
let arr = [8, 1, 2, 12];
let n = arr.length;
console.log("Max subarray XOR is " + maxSubarrayXOR(arr, n));
OutputMax subarray XOR is 15
Time Complexity: O(N).
Auxiliary Space: O(N)
Exercise: Extend the above solution so that it also prints starting and ending indexes of subarray with maximum value (Hint: we can add one more field to Trie node to achieve this
Similar Reads
Bitwise Algorithms Bitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Introduction to Bitwise Algorithms - Data Structures and Algorithms Tutorial Bit stands for binary digit. A bit is the basic unit of information and can only have one of two possible values that is 0 or 1. In our world, we usually with numbers using the decimal base. In other words. we use the digit 0 to 9 However, there are other number representations that can be quite use
15+ min read
Bitwise Operators in C In C, bitwise operators are used to perform operations directly on the binary representations of numbers. These operators work by manipulating individual bits (0s and 1s) in a number.The following 6 operators are bitwise operators (also known as bit operators as they work at the bit-level). They are
6 min read
Bitwise Operators in Java In Java, Operators are special symbols that perform specific operations on one or more than one operands. They build the foundation for any type of calculation or logic in programming.There are so many operators in Java, among all, bitwise operators are used to perform operations at the bit level. T
6 min read
Python Bitwise Operators Python bitwise operators are used to perform bitwise calculations on integers. The integers are first converted into binary and then operations are performed on each bit or corresponding pair of bits, hence the name bitwise operators. The result is then returned in decimal format.Note: Python bitwis
5 min read
JavaScript Bitwise Operators In JavaScript, a number is stored as a 64-bit floating-point number but bitwise operations are performed on a 32-bit binary number. To perform a bit-operation, JavaScript converts the number into a 32-bit binary number (signed) and performs the operation and converts back the result to a 64-bit numb
5 min read
All about Bit Manipulation Bit Manipulation is a technique used in a variety of problems to get the solution in an optimized way. This technique is very effective from a Competitive Programming point of view. It is all about Bitwise Operators which directly works upon binary numbers or bits of numbers that help the implementa
14 min read
What is Endianness? Big-Endian & Little-Endian Computers operate using binary code, a language made up of 0s and 1s. This binary code forms the foundation of all computer operations, enabling everything from rendering videos to processing complex algorithms. A single bit is a 0 or a 1, and eight bits make up a byte. While some data, such as cert
5 min read
Bits manipulation (Important tactics) Prerequisites: Bitwise operators in C, Bitwise Hacks for Competitive Programming, Bit Tricks for Competitive Programming Table of Contents Compute XOR from 1 to n (direct method)Count of numbers (x) smaller than or equal to n such that n+x = n^xHow to know if a number is a power of 2?Find XOR of all
15+ min read
Easy Problems on Bit Manipulations and Bitwise Algorithms
Binary representation of a given numberGiven an integer n, the task is to print the binary representation of the number. Note: The given number will be maximum of 32 bits, so append 0's to the left if the result string is smaller than 30 length.Examples: Input: n = 2Output: 00000000000000000000000000000010Input: n = 0Output: 000000000000
6 min read
Count set bits in an integerWrite an efficient program to count the number of 1s in the binary representation of an integer.Examples : Input : n = 6Output : 2Binary representation of 6 is 110 and has 2 set bitsInput : n = 13Output : 3Binary representation of 13 is 1101 and has 3 set bits[Naive Approach] - One by One CountingTh
15+ min read
Add two bit stringsGiven two binary strings s1 and s2 consisting of only 0s and 1s. Find the resultant string after adding the two Binary Strings.Note: The input strings may contain leading zeros but the output string should not have any leading zeros.Examples:Input: s1 = "1101", s2 = "111"Output: 10100Explanation: "1
1 min read
Turn off the rightmost set bitGiven an integer n, turn remove turn off the rightmost set bit in it. Input: 12Output: 8Explanation : Binary representation of 12 is 00...01100. If we turn of the rightmost set bit, we get 00...01000 which is binary representation of 8Input: 7 Output: 6 Explanation : Binary representation for 7 is 0
7 min read
Rotate bits of a numberGiven a 32-bit integer n and an integer d, rotate the binary representation of n by d positions in both left and right directions. After each rotation, convert the result back to its decimal representation and return both values in an array as [left rotation, right rotation].Note: A rotation (or cir
7 min read
Compute modulus division by a power-of-2-numberGiven two numbers n and d where d is a power of 2 number, the task is to perform n modulo d without the division and modulo operators.Input: 6 4Output: 2 Explanation: As 6%4 = 2Input: 12 8Output: 4Explanation: As 12%8 = 4Input: 10 2Output: 0Explanation: As 10%2 = 0Approach:The idea is to leverage bi
3 min read
Find the Number Occurring Odd Number of TimesGiven an array of positive integers. All numbers occur an even number of times except one number which occurs an odd number of times. Find the number in O(n) time & constant space. Examples : Input : arr = {1, 2, 3, 2, 3, 1, 3}Output : 3 Input : arr = {5, 7, 2, 7, 5, 2, 5}Output : 5 Recommended
12 min read
Program to find whether a given number is power of 2Given a positive integer n, the task is to find if it is a power of 2 or not.Examples: Input : n = 16Output : YesExplanation: 24 = 16Input : n = 42Output : NoExplanation: 42 is not a power of 2Input : n = 1Output : YesExplanation: 20 = 1Approach 1: Using Log - O(1) time and O(1) spaceThe idea is to
12 min read
Find position of the only set bitGiven a number n containing only 1 set bit in its binary representation, the task is to find the position of the only set bit. If there are 0 or more than 1 set bits, then return -1. Note: Position of set bit '1' should be counted starting with 1 from the LSB side in the binary representation of the
8 min read
Check for Integer OverflowGiven two integers a and b. The task is to design a function that adds two integers and detects overflow during the addition. If the sum does not cause an overflow, return their sum. Otherwise, return -1 to indicate an overflow.Note: You cannot use type casting to a larger data type to check for ove
7 min read
Find XOR of two number without using XOR operatorGiven two integers, the task is to find XOR of them without using the XOR operator.Examples : Input: x = 1, y = 2Output: 3Input: x = 3, y = 5Output: 6Approach - Checking each bit - O(log n) time and O(1) spaceA Simple Solution is to traverse all bits one by one. For every pair of bits, check if both
8 min read
Check if two numbers are equal without using arithmetic and comparison operatorsGiven two numbers, the task is to check if two numbers are equal without using Arithmetic and Comparison Operators or String functions. Method 1 : The idea is to use XOR operator. XOR of two numbers is 0 if the numbers are the same, otherwise non-zero. C++ // C++ program to check if two numbers // a
8 min read
Detect if two integers have opposite signsGiven two integers a and b, the task is to determine whether they have opposite signs. Return true if the signs of the two numbers are different and false otherwise.Examples:Input: a = -5, b = 10Output: trueExplanation: One number is negative and the other is positive, so their signs are different.I
9 min read
Swap Two Numbers Without Using Third VariableGiven two variables a and y, swap two variables without using a third variable. Examples: Input: a = 2, b = 3Output: a = 3, b = 2Input: a = 20, b = 0Output: a = 0, b = 20Input: a = 10, b = 10Output: a = 10, b = 10Table of ContentUsing Arithmetic OperatorsUsing Bitwise XORBuilt-in SwapUsing Arithmeti
6 min read
Russian Peasant (Multiply two numbers using bitwise operators)Given two integers a and b, the task is to multiply them without using the multiplication operator. Instead of that, use the Russian Peasant Algorithm.Examples:Input: a = 2, b = 5Output: 10Explanation: Product of 2 and 5 is 10.Input: a = 6, b = 9Output: 54Explanation: Product of 6 and 9 is 54.Input:
4 min read