Find original Array from given Array where each element is sum of prefix and postfix sum
Last Updated :
06 Nov, 2023
Given an array arr[] of length N, where arr is derived from an array nums[] which is lost. Array arr[] is derived as:
arr[i] = (nums[0] + nums[1] + ... + nums[i]) + (nums[i] + nums[i+1] + ... + nums[N-1]).
The task is to find nums[] array of length N.
Examples:
Input: N = 4, arr[] = {9, 10, 11, 10}
Output: {1, 2, 3, 2}
Explanation: If nums[] = {1, 2, 3, 2}, then according to above definition
arr[0] = (nums[0]) + (nums[0] + nums[1] + nums[2] + nums[3]) = 1 + 1 + 2 + 3 + 2 = 9
arr[1] = (nums[0] + nums[1]) + (nums[1] + nums[2] + nums[3]) = 1 + 2 + 2 + 3 + 2 = 10
arr[2] = (nums[0] + nums[1] + nums[2]) + (nums[2] + nums[3]) = 1 + 2 + 3 + 3 + 2 = 11
arr[3] = (nums[0] + nums[1] + nums[2] + nums[3]) + (nums[3]) = 1 + 2 + 3 + 2 + 2 = 10
Input: N = 2, arr[] = [25, 20]
Output: [10, 5]
Approach: Follow the below idea to solve the problem:
Suppose nums[] contains [a1, a2, a3, ..., aN]
Then, sum = a1 + a2 + a3 + . . . + aN.
We are given
b1 = a1 + a1 + a2 + . . . + aN = a1 + sum .....(1)
Similarly,
b2 = a1 + a2 + a2 + . . . + aN = a2 + sum .....(2)
. . . (so on) and in last
b1 = a1 + a2 + a3 + . . . + aN + aN = aN + sum .....(N)
where [b1, b2, b3 , . . ., bN] are elements of arr[] and,
total = b1 + b2 + b3 + . . . + bN
Adding all equation (1) + (2) + (3) + .... + (N) we will get
b1 + b2 + b3 + . . . + bN = (a1 + sum) + (a2 + sum) + . . . + (aN + sum)
total = (a1 + a1 + a2 + . . . + aN) + (N * sum)
total = (sum) + (N * sum)
total = (N + 1) * sum
Now find the value of sum variable after that simply:
a1 = (b1 - sum), a2 = (b2 - sum), . . ., aN = (bN - sum)
Using the above idea follow the below steps to implement the code:
- First of all, try to store the sum of elements of arr[] in a variable let's say total
- Using the formula (N + 1) * sum = total, we will get the value of variable sum which denotes the sum of elements present in the nums[] array.
- At last traverse N times to find nums[0] = arr[0] - sum, nums[1] = arr[1] - sum and so on.
- Return the array and print it.
Below is the implementation of the above approach:
C++
// C++ Algorithm for the above approach
#include <iostream>
#include <vector>
using namespace std;
// Function to find the original
// array nums[]
vector<int> findOrgArray(vector<int> arr, int N)
{
// Total variable stores the sum of
// elements of arr[]
int total = 0;
for (int val : arr)
total += val;
// Sum variable stores the sum of
// elements of nums[]
int sum = (total / (N + 1));
vector<int> v;
// Traversing to find the elements
// of nums[]
for (int i = 0; i < N; i++) {
int val = arr[i] - sum;
v.push_back(val);
}
// Returning nums[]
return v;
}
int main()
{
int N = 4;
vector<int> arr = { 9, 10, 11, 10 };
vector<int> v = findOrgArray(arr, N);
for (auto val : v)
cout << val << " ";
return 0;
}
Java
// Java algorithm of the above approach
import java.util.*;
class GFG {
// Driver Code
public static void main(String[] args)
{
int N = 4;
int[] arr = { 9, 10, 11, 10 };
List<Integer> nums = findOrgArray(arr, N);
for (int x : nums)
System.out.print(x + " ");
}
// Function to find the original
// array nums[]
public static List<Integer> findOrgArray(int[] arr,
int N)
{
// Total variable stores the sum of
// elements of arr[]
int total = 0;
for (int val : arr)
total += val;
// Sum variable stores the sum of
// elements of nums[]
int sum = (total / (N + 1));
List<Integer> nums = new ArrayList<>();
// Traversing to find the elements
// of nums[]
for (int i = 0; i < N; i++) {
int val = arr[i] - sum;
nums.add(val);
}
// Returning nums[]
return nums;
}
}
Python3
# python3 Algorithm for the above approach
# Function to find the original
# array nums[]
def findOrgArray(arr, N) :
# Total variable stores the sum of
# elements of arr[]
total = 0
for i in arr :
total+= i
# Sum variable stores the sum of
# elements of nums[]
sum = int(total / (N + 1));
v = []
# Traversing to find the elements
# of nums[]
for i in range (N) :
val = arr[i] - sum
v.append(val)
# Returning nums[]
return v
# Driver Code
if __name__ == "__main__" :
N = 4
arr = [ 9, 10, 11, 10 ]
v = findOrgArray(arr, N)
for val in v :
print(val,end=' ')
# this code is contributed by aditya942003patil
C#
// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
public class GFG
{
// Function to find the original
// array nums[]
public static List<int> findOrgArray(int[] arr,
int N)
{
// Total variable stores the sum of
// elements of arr[]
int total = 0;
//for (int x = 0; x < arr.count; x++)
foreach (int val in arr)
total += val;
// Sum variable stores the sum of
// elements of nums[]
int sum = (total / (N + 1));
List<int> nums = new List<int>();
// Traversing to find the elements
// of nums[]
for (int i = 0; i < N; i++) {
int val = arr[i] - sum;
nums.Add(val);
}
// Returning nums[]
return nums;
}
// Driver Code
public static void Main(String []args)
{
int N = 4;
int[] arr = { 9, 10, 11, 10 };
List<int> nums = findOrgArray(arr, N);
for (int x = 0; x < nums.Count; x++)
Console.Write(nums[x] + " ");
}
}
// This code is contributed by sanjoy_62.
JavaScript
<script>
// Function to find the original
// array nums[]
function findOrgArray(arr, N)
{
// Total variable stores the sum of
// elements of arr[]
let total = 0;
for (let i = 0; i < N; i++)
total += arr[i];
// Sum variable stores the sum of
// elements of nums[]
let sum = (total / (N + 1));
let v= new Array(N);
// Traversing to find the elements
// of nums[]
for (let i = 0; i < N; i++) {
v[i] = arr[i] - sum;
}
// Returning nums[]
return v;
}
let N = 4;
let arr = [ 9, 10, 11, 10 ];
let v = findOrgArray(arr, N);
for (let i = 0; i < N; i++)
document.write(v[i]+ " ");
// This code is contributed by satwik4409.
</script>
Time Complexity: O(N)
Auxiliary Space: O(N), to further reduce it to O(1), store the value in the same given array arr[] rather than storing it in a new array.
Another Approach:
- Initialize a variable named "total" to 0.
- Traverse the input array "arr" using a range-based for loop.
a. For each element "val" in "arr", add "val" to the "total" variable. - Compute the sum of the original array "nums" using the formula: sum = total / (N + 1).
- Traverse the input array "arr" again using a for loop with index "i" from 0 to N-1.
a. For each element in "arr", subtract "sum" from it and store the result back into "arr[i]". This effectively undoes the modification made to "arr" and recovers the original array "nums".
Below is the implementation of the above approach:
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to find the original array nums[]
void findOrgArray(vector<int>& arr, int N)
{
// Total variable stores the sum of elements of arr[]
int total = 0;
for (int val : arr)
total += val;
// Sum variable stores the sum of elements of nums[]
int sum = (total / (N + 1));
// Traversing to find the elements of nums[]
for (int i = 0; i < N; i++) {
arr[i] = arr[i] - sum;
}
}
int main()
{
int N = 4;
vector<int> arr = { 9, 10, 11, 10 };
findOrgArray(arr, N);
for (auto val : arr)
cout << val << " ";
return 0;
}
Java
import java.util.*;
import java.io.*;
public class GFG {
// Function to find the original array nums[]
static void findOrgArray(List<Integer> arr, int N) {
// Total variable stores the sum of elements of arr[]
int total = 0;
for (int val : arr) {
total += val;
}
// Sum variable stores the sum of elements of nums[]
int sum = total / (N + 1);
// Traversing to find the elements of nums[]
for (int i = 0; i < N; i++) {
arr.set(i, arr.get(i) - sum);
}
}
// Driver Code
public static void main(String[] args) {
int N = 4;
List<Integer> arr = new ArrayList<>();
arr.add(9);
arr.add(10);
arr.add(11);
arr.add(10);
findOrgArray(arr, N);
for (int val : arr) {
System.out.print(val + " ");
}
}
}
Python3
#Function to find the original array nums[]
def find_org_array(arr, N):
total = 0 #Total variable stores the sum of elements of arr[]
for val in arr:
total += val
#Sum variable stores the sum of elements of nums[]
sum = int(total / (N + 1))
#Traversing to find the elements of nums[]
for i in range(N):
arr[i] -= sum
return arr
#Driver Code
arr=[9, 10, 11, 10]
n=4
#function call
arr=find_org_array(arr,n)
for val in arr:
print(val,end=" ")
C#
using System;
using System.Collections.Generic;
class Program
{
// Function to find the original array nums[]
static void FindOrgArray(List<int> arr, int N)
{
// Total variable stores the sum of elements of arr[]
int total = 0;
foreach (int val in arr)
total += val;
// Sum variable stores the sum of elements of nums[]
int sum = total / (N + 1);
// Traversing to find the elements of nums[]
for (int i = 0; i < N; i++)
{
arr[i] = arr[i] - sum;
}
}
static void Main()
{
int N = 4;
List<int> arr = new List<int> { 9, 10, 11, 10 };
FindOrgArray(arr, N);
foreach (var val in arr)
Console.Write(val + " ");
}
}
JavaScript
// Function to find the original array nums[]
function findOrgArray(arr, N) {
// Total variable stores the sum of elements of arr[]
let total = 0;
for (let val of arr) {
total += val;
}
// Sum variable stores the sum of elements of nums[]
let sum = Math.floor(total / (N + 1));
// Traversing to find the elements of nums[]
for (let i = 0; i < N; i++) {
arr[i] = arr[i] - sum;
}
}
// Driver code
let N = 4;
let arr = [9, 10, 11, 10];
findOrgArray(arr, N);
for (let val of arr) {
console.log(val + " ");
}
Time Complexity: O(n)
Auxiliary Space: O(1)
Similar Reads
Find original array from encrypted array (An array of sums of other elements) Find original array from a given encrypted array of size n. Encrypted array is obtained by replacing each element of the original array by the sum of the remaining array elements. Examples : Input : arr[] = {10, 14, 12, 13, 11} Output : {5, 1, 3, 2, 4} Original array {5, 1, 3, 2, 4} Encrypted array
5 min read
Count of possible arrays from prefix-sum and suffix-sum arrays Given 2*N integers which are elements of a prefix and suffix array(in shuffled order) of an array of size N, the task is to find the no of possible array's of the size N which can be made from these elements Examples: Input: arr[] = {5, 2, 3, 5} Output: 2 Explanation: 1st array can be : {2, 3} Its p
15+ min read
Find position forming AP with prefix and suffix sum of Array with common difference D Given an array, arr[] of size N and a positive integer D, the task is to find the position i of an element in arr[] such that the prefix sum, arr[i] and suffix sum is in arithmetic progression with common difference D, i.e. arr[i] - sum(arr[0, . . ., i-1]) = sum(arr[i+1, . . ., N-1]) - arr[i] = D. I
8 min read
Rearrange array elements to maximize the sum of MEX of all prefix arrays Given an array arr[] of size N, the task is to rearrange the array elements such that the sum of MEX of all prefix arrays is the maximum possible. Note: MEX of a sequence is the minimum non-negative number not present in the sequence. Examples: Input: arr[] = {2, 0, 1}Output: 0, 1, 2Explanation:Sum
7 min read
Find index with minimum difference between prefix and suffix average of given Array Given an array arr[] of size N, the task is to find an index i such that the difference between prefix average and suffix average is minimum, i.e. average of elements till i (in range [0, i]) and the average of elements after i (in range [i+1, N)) is minimum. Examples: Input: arr[] = {2, 9, 3, 5}Out
8 min read
Original Array from given Prefix Sums You are given a prefix sum array presum[] of an array arr[]. The task is to find the original array arr[] whose prefix sum is presum[].Examples: Input: presum[] = {5, 7, 10, 11, 18}Output: [5, 2, 3, 1, 7]Explanation: Original array {5, 2, 3, 1, 7} Prefix sum array = {5, 5+2, 5+2+3, 5+2+3+1, 5+2+3+1+
4 min read
Index with Minimum sum of prefix and suffix sums in an Array Given an array of integers. The task is to find the index i in the array at which the value of prefixSum(i) + suffixSum(i) is minimum.Note: PrefixSum(i) = The sum of first i numbers of the array.SuffixSum(i) = the sum of last N - i + 1 numbers of the array.1-based indexing is considered for the arra
10 min read
Count of indices up to which prefix and suffix sum is equal for given Array Given an array arr[] of integers, the task is to find the number of indices up to which prefix sum and suffix sum are equal. Example: Input: arr = [9, 0, 0, -1, 11, -1]Output: 2Explanation: The indices up to which prefix and suffix sum are equal are given below:At index 1 prefix and suffix sum are 9
15+ min read
Find sum of all unique elements in the array for K queries Given an arrays arr[] in which initially all elements are 0 and another array Q[][] containing K queries where every query represents a range [L, R], the task is to add 1 to each subarrays where each subarray is defined by the range [L, R], and return sum of all unique elements.Note: One-based index
8 min read
Count of elements which is the sum of a subarray of the given Array Given an array arr[], the task is to count elements in an array such that there exists a subarray whose sum is equal to this element.Note: Length of subarray must be greater than 1. Examples: Input: arr[] = {1, 2, 3, 4, 5, 6, 7} Output: 4 Explanation: There are 4 such elements in array - arr[2] = 3
7 min read