Find next Smaller of next Greater in an array
Last Updated :
05 Apr, 2023
Given array of integer, find the next smaller of next greater element of every element in array.
Note : Elements for which no greater element exists or no smaller of greater element exist, print -1.
Examples:
Input : arr[] = {5, 1, 9, 2, 5, 1, 7}
Output: 2 2 -1 1 -1 -1 -1
Explanation :
Next Greater -> Right Smaller
5 -> 9 9 -> 2
1 -> 9 9 -> 2
9 -> -1 -1 -> -1
2 -> 5 5 -> 1
5 -> 7 7 -> -1
1 -> 7 7 -> -1
7 -> -1 -1 -> -1
Input : arr[] = {4, 8, 2, 1, 9, 5, 6, 3}
Output : 2 5 5 5 -1 3 -1 -1
A simple solution is to iterate through all elements. For every element, find the next greater element of current element and then find right smaller element for current next greater element.
Code-
C++
// C++ Program to find Right smaller element of next
// greater element
#include<bits/stdc++.h>
using namespace std;
// Function to find Right smaller element of next greater
// element
void nextSmallerOfNextGreater(int arr[], int n)
{
vector<int> vec;
//For 1st n-1 elements of vector
for(int i=0;i<n-1;i++){
int temp=arr[i];
int next=-1;
int ans=-1;
for(int j=i+1;j<n;j++){
if(arr[j]>temp){
next=j;
break;
}
}
if(next==-1){vec.push_back(-1);}
else{
for(int j=next+1;j<n;j++){
if(arr[j]<arr[next]){
ans=j;
break;
}
}
if(ans==-1){vec.push_back(-1);}
else{vec.push_back(arr[ans]);}
}
}
vec.push_back(-1);//For last element of vector
for(auto x: vec){
cout<<x<<" ";
}
cout<<endl;
}
// Driver program
int main()
{
int arr[] = {5, 1, 9, 2, 5, 1, 7};
int n = sizeof(arr)/sizeof(arr[0]);
nextSmallerOfNextGreater(arr, n);
return 0;
}
Java
// Java Program to find Right smaller element of next
// greater element
import java.util.*;
public class Main {
// Function to find Right smaller element of next greater element
static void nextSmallerOfNextGreater(int arr[], int n) {
ArrayList<Integer> vec = new ArrayList<Integer>();
// For 1st n-1 elements of vector
for(int i = 0; i < n - 1; i++) {
int temp = arr[i];
int next = -1;
int ans = -1;
for(int j = i + 1; j < n; j++) {
if(arr[j] > temp) {
next = j;
break;
}
}
if(next == -1) {
vec.add(-1);
}
else {
for(int j = next + 1; j < n; j++) {
if(arr[j] < arr[next]) {
ans = j;
break;
}
}
if(ans == -1) {
vec.add(-1);
}
else {
vec.add(arr[ans]);
}
}
}
vec.add(-1); // For last element of vector
for(int x : vec) {
System.out.print(x + " ");
}
System.out.println();
}
// Driver program
public static void main(String[] args) {
int arr[] = {5, 1, 9, 2, 5, 1, 7};
int n = arr.length;
nextSmallerOfNextGreater(arr, n);
}
}
Python3
# Function to find Right smaller element of next greater element
def nextSmallerOfNextGreater(arr, n):
vec = []
# For 1st n-1 elements of vector
for i in range(n-1):
temp = arr[i]
next = -1
ans = -1
for j in range(i+1, n):
if arr[j] > temp:
next = j
break
if next == -1:
vec.append(-1)
else:
for j in range(next+1, n):
if arr[j] < arr[next]:
ans = j
break
if ans == -1:
vec.append(-1)
else:
vec.append(arr[ans])
vec.append(-1) # For last element of vector
for x in vec:
print(x, end=" ")
print()
# Driver program
arr = [5, 1, 9, 2, 5, 1, 7]
n = len(arr)
nextSmallerOfNextGreater(arr, n)
C#
using System;
using System.Collections.Generic;
public class MainClass
{
// Function to find Right smaller element of next
// greater element
static void nextSmallerOfNextGreater(int[] arr, int n)
{
List<int> vec = new List<int>();
// For 1st n-1 elements of vector
for (int i = 0; i < n - 1; i++) {
int temp = arr[i];
int next = -1;
int ans = -1;
for (int j = i + 1; j < n; j++) {
if (arr[j] > temp) {
next = j;
break;
}
}
if (next == -1) {
vec.Add(-1);
}
else {
for (int j = next + 1; j < n; j++) {
if (arr[j] < arr[next]) {
ans = j;
break;
}
}
if (ans == -1) {
vec.Add(-1);
}
else {
vec.Add(arr[ans]);
}
}
}
vec.Add(-1); // For last element of vector
foreach(var x in vec) { Console.Write(x + " "); }
Console.WriteLine();
}
// Driver program
public static void Main()
{
int[] arr = { 5, 1, 9, 2, 5, 1, 7 };
int n = arr.Length;
nextSmallerOfNextGreater(arr, n);
}
}
JavaScript
// Function to find Right smaller element of next greater element
function nextSmallerOfNextGreater(arr, n) {
let vec = [];
// For 1st n-1 elements of vector
for (let i = 0; i < n - 1; i++) {
let temp = arr[i];
let next = -1;
let ans = -1;
for (let j = i + 1; j < n; j++) {
if (arr[j] > temp) {
next = j;
break;
}
}
if (next == -1) {
vec.push(-1);
} else {
for (let j = next + 1; j < n; j++) {
if (arr[j] < arr[next]) {
ans = j;
break;
}
}
if (ans == -1) {
vec.push(-1);
} else {
vec.push(arr[ans]);
}
}
}
vec.push(-1); // For last element of vector
for (let x of vec) {
process.stdout.write(x + " ");
}
console.log();
}
// Driver program
let arr = [5, 1, 9, 2, 5, 1, 7];
let n = arr.length;
nextSmallerOfNextGreater(arr, n);
Time Complexity of this solution is O(n2).
Space Complexity: O(1)
An efficient solution takes O(n) time. Notice that it is the combination of Next greater element & next smaller element in array.
Let input array be 'arr[]' and size of array be 'n'
find next greatest element of every element
step 1 : Create an empty stack (S) in which we store the indexes
and NG[] that is user to store the indexes of NGE
of every element.
step 2 : Traverse the array in reverse order
where i goes from (n-1 to 0)
a) While S is non empty and the top element of
S is smaller than or equal to 'arr[i]':
pop S
b) If S is empty
arr[i] has no greater element
NG[i] = -1
c) else we have next greater element
NG[i] = S.top() // here we store the index of NGE
d) push current element index in stack
S.push(i)
Find Right smaller element of every element
step 3 : create an array RS[] used to store the index of
right smallest element
step 4 : we repeat step (1 & 2) with little bit of
modification in step 1 & 2 .
they are :
a). we use RS[] in place of NG[].
b). In step (2.a)
we pop element form stack S while S is not
empty or the top element of S is greater than
or equal to 'arr[i]'
step 5 : compute all RSE of NGE :
where i goes from 0 to n-1
if NG[ i ] != -1 && RS[ NG [ i]] ! =-1
print arr[RS[NG[i]]]
else
print -1
Below is the implementation of above idea
C++
// C++ Program to find Right smaller element of next
// greater element
#include<bits/stdc++.h>
using namespace std;
// function find Next greater element
void nextGreater(int arr[], int n, int next[], char order)
{
// create empty stack
stack<int> S;
// Traverse all array elements in reverse order
// order == 'G' we compute next greater elements of
// every element
// order == 'S' we compute right smaller element of
// every element
for (int i=n-1; i>=0; i--)
{
// Keep removing top element from S while the top
// element is smaller than or equal to arr[i] (if Key is G)
// element is greater than or equal to arr[i] (if order is S)
while (!S.empty() &&
((order=='G')? arr[S.top()] <= arr[i]:
arr[S.top()] >= arr[i]))
S.pop();
// store the next greater element of current element
if (!S.empty())
next[i] = S.top();
// If all elements in S were smaller than arr[i]
else
next[i] = -1;
// Push this element
S.push(i);
}
}
// Function to find Right smaller element of next greater
// element
void nextSmallerOfNextGreater(int arr[], int n)
{
int NG[n]; // stores indexes of next greater elements
int RS[n]; // stores indexes of right smaller elements
// Find next greater element
// Here G indicate next greater element
nextGreater(arr, n, NG, 'G');
// Find right smaller element
// using same function nextGreater()
// Here S indicate right smaller elements
nextGreater(arr, n, RS, 'S');
// If NG[i] == -1 then there is no smaller element
// on right side. We can find Right smaller of next
// greater by arr[RS[NG[i]]]
for (int i=0; i< n; i++)
{
if (NG[i] != -1 && RS[NG[i]] != -1)
cout << arr[RS[NG[i]]] << " ";
else
cout<<"-1"<<" ";
}
}
// Driver program
int main()
{
int arr[] = {5, 1, 9, 2, 5, 1, 7};
int n = sizeof(arr)/sizeof(arr[0]);
nextSmallerOfNextGreater(arr, n);
return 0;
}
Java
// Java Program to find Right smaller element of next
// greater element
import java.util.Stack;
public class Main {
// function find Next greater element
public static void nextGreater(int arr[], int next[], char order)
{
// create empty stack
Stack<Integer> stack=new Stack<>();
// Traverse all array elements in reverse order
// order == 'G' we compute next greater elements of
// every element
// order == 'S' we compute right smaller element of
// every element
for (int i=arr.length-1; i>=0; i--)
{
// Keep removing top element from S while the top
// element is smaller than or equal to arr[i] (if Key is G)
// element is greater than or equal to arr[i] (if order is S)
while (!stack.isEmpty() && ((order=='G')? arr[stack.peek()] <= arr[i]:arr[stack.peek()] >= arr[i]))
stack.pop();
// store the next greater element of current element
if (!stack.isEmpty())
next[i] = stack.peek();
// If all elements in S were smaller than arr[i]
else
next[i] = -1;
// Push this element
stack.push(i);
}
}
// Function to find Right smaller element of next greater
// element
public static void nextSmallerOfNextGreater(int arr[])
{
int NG[]=new int[arr.length]; // stores indexes of next greater elements
int RS[]=new int[arr.length]; // stores indexes of right smaller elements
// Find next greater element
// Here G indicate next greater element
nextGreater(arr, NG, 'G');
// Find right smaller element
// using same function nextGreater()
// Here S indicate right smaller elements
nextGreater(arr, RS, 'S');
// If NG[i] == -1 then there is no smaller element
// on right side. We can find Right smaller of next
// greater by arr[RS[NG[i]]]
for (int i=0; i< arr.length; i++)
{
if (NG[i] != -1 && RS[NG[i]] != -1)
System.out.print(arr[RS[NG[i]]]+" ");
else
System.out.print("-1 ");
}
}
public static void main(String args[]) {
int arr[] = {5, 1, 9, 2, 5, 1, 7};
nextSmallerOfNextGreater(arr);
}
}
//This code is contributed by Gaurav Tiwari
Python 3
# Python 3 Program to find Right smaller element of next
# greater element
# function find Next greater element
def nextGreater(arr, n, next, order):
S = []
# Traverse all array elements in reverse order
# order == 'G' we compute next greater elements of
# every element
# order == 'S' we compute right smaller element of
# every element
for i in range(n-1,-1,-1):
# Keep removing top element from S while the top
# element is smaller than or equal to arr[i] (if Key is G)
# element is greater than or equal to arr[i] (if order is S)
while (S!=[] and (arr[S[len(S)-1]] <= arr[i]
if (order=='G') else arr[S[len(S)-1]] >= arr[i] )):
S.pop()
# store the next greater element of current element
if (S!=[]):
next[i] = S[len(S)-1]
# If all elements in S were smaller than arr[i]
else:
next[i] = -1
# Push this element
S.append(i)
# Function to find Right smaller element of next greater
# element
def nextSmallerOfNextGreater(arr, n):
NG = [None]*n # stores indexes of next greater elements
RS = [None]*n # stores indexes of right smaller elements
# Find next greater element
# Here G indicate next greater element
nextGreater(arr, n, NG, 'G')
# Find right smaller element
# using same function nextGreater()
# Here S indicate right smaller elements
nextGreater(arr, n, RS, 'S')
# If NG[i] == -1 then there is no smaller element
# on right side. We can find Right smaller of next
# greater by arr[RS[NG[i]]]
for i in range(n):
if (NG[i] != -1 and RS[NG[i]] != -1):
print(arr[RS[NG[i]]],end=" ")
else:
print("-1",end=" ")
# Driver program
if __name__=="__main__":
arr = [5, 1, 9, 2, 5, 1, 7]
n = len(arr)
nextSmallerOfNextGreater(arr, n)
# this code is contributed by ChitraNayal
C#
using System;
using System.Collections.Generic;
// C# Program to find Right smaller element of next
// greater element
public class GFG {
// function find Next greater element
public static void nextGreater(int []arr, int []next, char order)
{
// create empty stack
Stack<int> stack=new Stack<int>();
// Traverse all array elements in reverse order
// order == 'G' we compute next greater elements of
// every element
// order == 'S' we compute right smaller element of
// every element
for (int i=arr.Length-1; i>=0; i--)
{
// Keep removing top element from S while the top
// element is smaller than or equal to arr[i] (if Key is G)
// element is greater than or equal to arr[i] (if order is S)
while (stack.Count!=0 && ((order=='G')? arr[stack.Peek()] <= arr[i]:arr[stack.Peek()] >= arr[i]))
stack.Pop();
// store the next greater element of current element
if (stack.Count!=0)
next[i] = stack.Peek();
// If all elements in S were smaller than arr[i]
else
next[i] = -1;
// Push this element
stack.Push(i);
}
}
// Function to find Right smaller element of next greater
// element
public static void nextSmallerOfNextGreater(int []arr)
{
int []NG=new int[arr.Length]; // stores indexes of next greater elements
int []RS=new int[arr.Length]; // stores indexes of right smaller elements
// Find next greater element
// Here G indicate next greater element
nextGreater(arr, NG, 'G');
// Find right smaller element
// using same function nextGreater()
// Here S indicate right smaller elements
nextGreater(arr, RS, 'S');
// If NG[i] == -1 then there is no smaller element
// on right side. We can find Right smaller of next
// greater by arr[RS[NG[i]]]
for (int i=0; i< arr.Length; i++)
{
if (NG[i] != -1 && RS[NG[i]] != -1)
Console.Write(arr[RS[NG[i]]]+" ");
else
Console.Write("-1 ");
}
}
public static void Main() {
int []arr = {5, 1, 9, 2, 5, 1, 7};
nextSmallerOfNextGreater(arr);
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
// Javascript Program to find Right smaller element of next
// greater element
// function find Next greater element
function nextGreater(arr,next,order)
{
// create empty stack
let stack = [];
// Traverse all array elements in reverse order
// order == 'G' we compute next greater elements of
// every element
// order == 'S' we compute right smaller element of
// every element
for (let i = arr.length - 1; i >= 0; i--)
{
// Keep removing top element from S while the top
// element is smaller than or equal to arr[i] (if Key is G)
// element is greater than or equal to arr[i] (if order is S)
while (stack.length!=0 && ((order=='G')? arr[stack[stack.length-1]] <= arr[i] : arr[stack[stack.length-1]] >= arr[i]))
stack.pop();
// store the next greater element of current element
if (stack.length != 0)
next[i] = stack[stack.length - 1];
// If all elements in S were smaller than arr[i]
else
next[i] = -1;
// Push this element
stack.push(i);
}
}
// Function to find Right smaller element of next greater
// element
function nextSmallerOfNextGreater(arr)
{
let NG = new Array(arr.length); // stores indexes of next greater elements
let RS = new Array(arr.length); // stores indexes of right smaller elements
for(let i = 0; i < arr.length; i++)
{
NG[i] = 0;
RS[i] = 0;
}
// Find next greater element
// Here G indicate next greater element
nextGreater(arr, NG, 'G');
// Find right smaller element
// using same function nextGreater()
// Here S indicate right smaller elements
nextGreater(arr, RS, 'S');
// If NG[i] == -1 then there is no smaller element
// on right side. We can find Right smaller of next
// greater by arr[RS[NG[i]]]
for (let i = 0; i < arr.length; i++)
{
if (NG[i] != -1 && RS[NG[i]] != -1)
document.write(arr[RS[NG[i]]] + " ");
else
document.write("-1 ");
}
}
// Driver code
let arr = [5, 1, 9, 2, 5, 1, 7];
nextSmallerOfNextGreater(arr);
// This code is contributed by rag2127
</script>
Time complexity : O(n), where n is the size of the given array.
Auxiliary Space: O(n), where n is the size of the given array.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem