Find minimum subarray sum for each index i in subarray [i, N-1]
Last Updated :
23 Jul, 2025
Given an array arr[] of size N, the task is to find the minimum subarray sum in the subarrays [i, N-1] for all i in [0, N-1].
Examples:
Input: arr[ ] = {3, -1, -2}
Output: -3 -3 -2
Explanation:
For (i = 1) i.e. {3, -1, -2}, the minimum subarray sum is -3 for {-1, -2}.
For (i = 2) i.e. {-1, -2}, the minimum subarray sum is -3 for {-1, -2}.
For (i = 3) i.e. {-2}, the minimum subarray sum is -2 for {-2}.
Input: arr[ ] = {5, -3, -2, 9, 4}
Output: -5 -5 -2 4 4
Approach: The problem can be solved by using the standard Kadane's algorithm for maximum subarray sum. Follow the steps below to solve this problem:
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Kadane's Algorithm to find max
// sum subarray
int kadane(int arr[], int start, int end)
{
int currMax = arr[start];
int maxSoFar = arr[start];
// Iterating from start to end
for (int i = start + 1; i < end + 1; i++) {
currMax = max(arr[i], arr[i] + currMax);
maxSoFar = max(maxSoFar, currMax);
}
// Returning maximum sum
return maxSoFar;
}
// Function to find the minimum subarray
// sum for each suffix
void minSubarraySum(int arr[], int n)
{
// Inverting all the elements of
// array arr[].
for (int i = 0; i < n; i++) {
arr[i] = -arr[i];
}
// Finding the result for each
// subarray
for (int i = 0; i < n; i++) {
// Finding the max subarray sum
int result = kadane(arr, i, n - 1);
// Inverting the result
result = -result;
// Print the result
cout << result << " ";
}
}
// Driver code
int main()
{
// Given Input
int n = 5;
int arr[] = { 5, -3, -2, 9, 4 };
// Function Call
minSubarraySum(arr, n);
return 0;
}
Java
// Java program for the above approach
import java.io.*;
class GFG{
// Kadane's Algorithm to find max
// sum subarray
static int kadane(int arr[], int start, int end)
{
int currMax = arr[start];
int maxSoFar = arr[start];
// Iterating from start to end
for(int i = start + 1; i < end + 1; i++)
{
currMax = Math.max(arr[i], arr[i] + currMax);
maxSoFar = Math.max(maxSoFar, currMax);
}
// Returning maximum sum
return maxSoFar;
}
// Function to find the minimum subarray
// sum for each suffix
static void minSubarraySum(int arr[], int n)
{
// Inverting all the elements of
// array arr[].
for(int i = 0; i < n; i++)
{
arr[i] = -arr[i];
}
// Finding the result for each
// subarray
for(int i = 0; i < n; i++)
{
// Finding the max subarray sum
int result = kadane(arr, i, n - 1);
// Inverting the result
result = -result;
// Print the result
System.out.print(result + " ");
}
}
// Driver code
public static void main(String[] args)
{
// Given Input
int n = 5;
int arr[] = { 5, -3, -2, 9, 4 };
// Function Call
minSubarraySum(arr, n);
}
}
// This code is contributed by Potta Lokesh
Python3
# Python3 program for the above approach
# Kadane's Algorithm to find max
# sum subarray
def kadane(arr, start, end):
currMax = arr[start]
maxSoFar = arr[start]
# Iterating from start to end
for i in range(start + 1,end + 1, 1):
currMax = max(arr[i], arr[i] + currMax)
maxSoFar = max(maxSoFar, currMax)
# Returning maximum sum
return maxSoFar
# Function to find the minimum subarray
# sum for each suffix
def minSubarraySum(arr, n):
# Inverting all the elements of
# array arr[].
for i in range(n):
arr[i] = -arr[i]
# Finding the result for each
# subarray
for i in range(n):
# Finding the max subarray sum
result = kadane(arr, i, n - 1)
# Inverting the result
result = -result
# Print the result
print(result, end = " ")
# Driver code
if __name__ == '__main__':
# Given Input
n = 5
arr = [ 5, -3, -2, 9, 4 ]
# Function Call
minSubarraySum(arr, n)
# This code is contributed by SURENDRA_GANGWAR
C#
// C# program for the above approach
using System;
class GFG{
// Kadane's Algorithm to find max
// sum subarray
static int kadane(int []arr, int start, int end)
{
int currMax = arr[start];
int maxSoFar = arr[start];
// Iterating from start to end
for(int i = start + 1; i < end + 1; i++)
{
currMax = Math.Max(arr[i], arr[i] + currMax);
maxSoFar = Math.Max(maxSoFar, currMax);
}
// Returning maximum sum
return maxSoFar;
}
// Function to find the minimum subarray
// sum for each suffix
static void minSubarraySum(int []arr, int n)
{
// Inverting all the elements of
// array arr[].
for(int i = 0; i < n; i++)
{
arr[i] = -arr[i];
}
// Finding the result for each
// subarray
for(int i = 0; i < n; i++)
{
// Finding the max subarray sum
int result = kadane(arr, i, n - 1);
// Inverting the result
result = -result;
// Print the result
Console.Write(result + " ");
}
}
// Driver code
public static void Main(String[] args)
{
// Given Input
int n = 5;
int []arr = { 5, -3, -2, 9, 4 };
// Function Call
minSubarraySum(arr, n);
}
}
// This code is contributed by shivanisinghss2110
JavaScript
<script>
// Javascript program for the above approach
// Kadane's Algorithm to find max
// sum subarray
function kadane(arr, start, end)
{
let currMax = arr[start];
let maxSoFar = arr[start];
// Iterating from start to end
for(let i = start + 1; i < end + 1; i++)
{
currMax = Math.max(arr[i], arr[i] + currMax);
maxSoFar = Math.max(maxSoFar, currMax);
}
// Returning maximum sum
return maxSoFar;
}
// Function to find the minimum subarray
// sum for each suffix
function minSubarraySum(arr, n)
{
// Inverting all the elements of
// array arr[].
for(let i = 0; i < n; i++)
{
arr[i] = -arr[i];
}
// Finding the result for each
// subarray
for(let i = 0; i < n; i++)
{
// Finding the max subarray sum
let result = kadane(arr, i, n - 1);
// Inverting the result
result = -result;
// Print the result
document.write(result + " ");
}
}
// Driver code
// Given Input
let n = 5;
let arr = [ 5, -3, -2, 9, 4 ];
// Function Call
minSubarraySum(arr, n);
// This code is contributed by gfgking
</script>
Time Complexity: O(N^2)
Auxiliary Space: O(1)
Efficient Approach: The repetitive process of finding the maximum subarray sum using Kadane's can be optimized further by traversing the array from the back and storing the maximum negative sum till that point from the end.
Below is the code implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void minSubarraySum(int arr[], int n)
{
vector<int> res(n);
for (int i = 0; i < n; i++)
arr[i] *= -1;
int sum = 0;
int maxSum = INT_MIN;
for (int i = n - 1; i >= 0; i--) {
sum += arr[i];
maxSum = max(sum, maxSum);
// Store result for [i,n-1]
res[i] = -maxSum;
if (sum < 0)
sum = 0;
}
for (int i : res)
cout << i << " ";
}
int main()
{
int n = 5;
int arr[] = { 5, -3, -2, 9, 4 };
// Function Call
minSubarraySum(arr, n);
return 0;
}
Java
// Java code to implement the approach
import java.io.*;
class GFG {
public static void minSubarraySum(int arr[], int n)
{
int[] res = new int[n];
for (int i = 0; i < n; i++)
arr[i] *= -1;
int sum = 0;
int maxSum = Integer.MIN_VALUE;
for (int i = n - 1; i >= 0; i--) {
sum += arr[i];
maxSum = Math.max(sum, maxSum);
// Store result for [i,n-1]
res[i] = -maxSum;
if (sum < 0)
sum = 0;
}
for (int i : res)
System.out.print(i + " ");
}
// Driver Code
public static void main(String[] args)
{
int n = 5;
int arr[] = { 5, -3, -2, 9, 4 };
// Function Call
minSubarraySum(arr, n);
}
}
// This code is contributed by aarohirai2616.
Python3
def minSubarraySum(arr, n):
res = [0]*n
for i in range(0, n):
arr[i] *= -1
suma = 0
maxSum = -9223372036854775808
i = n - 1
while(i >= 0):
suma += arr[i]
maxSum = max(suma, maxSum)
# Store result for [i,n-1]
res[i] = -maxSum
if (suma < 0):
suma = 0
i = i-1
for i in range(0, n):
print(res[i], end=" ")
# Driver code
n = 5
arr = [5, -3, -2, 9, 4]
# Function Call
minSubarraySum(arr, n)
# This code is contributed by aarohirai2616.
C#
// C# code to implement the approach
using System;
public class GFG {
public static void minSubarraySum(int[] arr, int n)
{
int[] res = new int[n];
for (int i = 0; i < n; i++)
arr[i] *= -1;
int sum = 0;
int maxSum = Int32.MinValue;
for (int i = n - 1; i >= 0; i--) {
sum += arr[i];
maxSum = Math.Max(sum, maxSum);
// Store result for [i,n-1]
res[i] = -maxSum;
if (sum < 0)
sum = 0;
}
for (int i = 0; i < n; i++) {
Console.Write(res[i] + " ");
}
}
static public void Main()
{
// Code
int n = 5;
int[] arr = { 5, -3, -2, 9, 4 };
// Function Call
minSubarraySum(arr, n);
}
}
// This code is contributed by lokeshmvs21.
JavaScript
function minSubarraySum(arr, n)
{
let res = [];
for(let i=0;i<n;i++)
{
res.push(0);
}
for (let i = 0; i < n; i++)
arr[i] *= -1;
let sum = 0;
let maxSum = -2147483647 - 1;
for (let i = n - 1; i >= 0; i--) {
sum += arr[i];
maxSum = Math.max(sum, maxSum);
// Store result for [i,n-1]
res[i] = -1*maxSum;
if (sum < 0)
sum = 0;
}
console.log(res);
}
let n = 5;
let arr = [ 5, -3, -2, 9, 4 ];
// Function Call
minSubarraySum(arr, n);
// This code is contributed by akashish__
Time Complexity: O(N)
Auxiliary Space: O(N)
Related Topic: Subarrays, Subsequences, and Subsets in Array
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem