Find frequency of the elements in given ranges
Last Updated :
23 Jul, 2025
Given a 2-dimensional integer array arr[] representing N ranges, each of type [starti, endi] (starti, endi ≤ 109) and Q queries represented in array query[], the task is to find the maximum occurrence of query[i] (query[i] ≤ 109) in the given ranges for all i in the range [0, Q-1].
Examples:
Input: arr[] = {{1, 5}, {3, 6}, {5, 7}, {12, 15}}, query[] = {1, 3, 5, 13}
Output: {1, 2, 3, 1}
Explanation: The occurrence of 1 in the range is 1.
The occurrence of 3 in the range is 2.
The occurrence of 5 in the range is 3.
The occurrence of 13 in the range is 1.
Input: arr[] = {{2, 5}, {9, 11}, {3, 9}, {15, 20}}, query[] = {3, 9, 16, 55}
Output: {2, 2, 1, 0}
Naive approach: For each query, traverse the array and check whether query[j] is in the range of arr[i] = [starti, endi]. If it is in the range then increment the counter for the occurrence of that element and store this counter corresponding to query[j] in the result.
Time Complexity: O(Q * N)
Auxiliary Space: O(1)
Efficient approach: The problem can be solved based on the following idea:
Use the technique of prefix sum to store the occurrences of each element and it will help to find the answer for each query in constant time.
Follow the steps below to implement the above idea:
- Declare a one-dimensional array (say prefixSum[]) of length M (where M is the maximum element in arr[]) to store the occurrence of each element.
- Iterate over the array arr[] and do the following for each starti and endi :
- Increment the value at prefixSum[starti] by 1
- Decrement the value at prefixSum[endi + 1] by 1
- Iterate over prefixSum[] array and calculate prefix sum. Using this, the occurrences of each element in the given ranges will get calculated
- Iterate over the queries array and for each query get the value of prefixSum[query[i]] and store it into the resultant array.
- Return the result array.
Below is the implementation of the above approach:
C++
// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
#define MAX 10000000
// Function to find occurrences of
// each element in array
void findTheOccurrence(vector<vector<int> >& arr,
vector<int>& q,
vector<int>& result)
{
vector<int> prefixSum(MAX);
// Iterating over arr
for (int i = 0; i < arr.size(); i++) {
int start = arr[i][0];
int end = arr[i][1];
// Increment the value of
// prefixSum at start
prefixSum[start]++;
// Decrement the value of
// prefixSum at end + 1
prefixSum[end + 1]--;
}
// Calculating the prefix sum
for (int i = 1; i < prefixSum.size(); i++) {
prefixSum[i]
= prefixSum[i - 1] + prefixSum[i];
}
// Resolving each queries
for (int i = 0; i < q.size(); i++) {
int occurrence = prefixSum[q[i]];
result.push_back(occurrence);
}
}
// Driver code
int main()
{
vector<vector<int> > arr
= { { 1, 5 }, { 3, 6 }, { 5, 7 }, { 12, 15 } };
vector<int> query = { 1, 3, 5, 13 };
vector<int> result;
// Function call
findTheOccurrence(arr, query, result);
for (auto i : result)
cout << i << " ";
return 0;
}
Java
// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG
{
static int MAX = 10000000;
// Function to find occurrences of
// each element in array
static void findTheOccurrence(int[][] arr, int[] q,
ArrayList<Integer> result)
{
int[] prefixSum = new int[(MAX)];
// Iterating over arr
for (int i = 0; i < arr.length; i++) {
int start = arr[i][0];
int end = arr[i][1];
// Increment the value of
// prefixSum at start
prefixSum[start]++;
// Decrement the value of
// prefixSum at end + 1
prefixSum[end + 1]--;
}
// Calculating the prefix sum
for (int i = 1; i < prefixSum.length; i++) {
prefixSum[i]
= prefixSum[i - 1] + prefixSum[i];
}
// Resolving each queries
for (int i = 0; i < q.length; i++) {
int occurrence = prefixSum[q[i]];
result.add(occurrence);
}
}
// Driver Code
public static void main(String args[])
{
int[][] arr
= { { 1, 5 }, { 3, 6 }, { 5, 7 }, { 12, 15 } };
int[] query = { 1, 3, 5, 13 };
ArrayList<Integer> result
= new ArrayList<Integer>();
// Function call
findTheOccurrence(arr, query, result);
for (int i : result)
System.out.print(i + " ");
}
}
// This code is contributed by sanjoy_62.
Python3
# Python3 code to implement the approach
MAX = 10000;
# Function to find occurrences of
# each element in array
def findTheOccurrence(arr, q, result):
prefixSum = [0] * MAX
# Iterating over arr
for i in range(len(arr)):
start = arr[i][0];
end = arr[i][1];
# Increment the value of
# prefixSum at start
prefixSum[start] += 1
# Decrement the value of
# prefixSum at end + 1
prefixSum[end + 1] -= 1
# Calculating the prefix sum
for i in range(1, len(prefixSum)):
prefixSum[i] = prefixSum[i - 1] + prefixSum[i];
# Resolving each queries
for i in range(0, len(q)):
occurrence = prefixSum[q[i]];
result.append(occurrence);
return result;
# Driver code
arr = [[ 1, 5 ], [ 3, 6 ], [ 5, 7 ], [ 12, 15 ] ];
query = [ 1, 3, 5, 13 ];
result = [];
# Function call
findTheOccurrence(arr, query, result);
for i in range(len(result)):
print(result[i], end=" ");
# This code is contributed by Saurabh Jaiswal
C#
// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG
{
static int MAX = 10000000;
// Function to find occurrences of
// each element in array
static void findTheOccurrence(int[,] arr, int[] q,
List<int> result)
{
int[] prefixSum = new int[(MAX)];
// Iterating over arr
for (int i = 0; i < arr.GetLength(0); i++) {
int start = arr[i, 0];
int end = arr[i, 1];
// Increment the value of
// prefixSum at start
prefixSum[start]++;
// Decrement the value of
// prefixSum at end + 1
prefixSum[end + 1]--;
}
// Calculating the prefix sum
for (int i = 1; i < prefixSum.Length; i++) {
prefixSum[i]
= prefixSum[i - 1] + prefixSum[i];
}
// Resolving each queries
for (int i = 0; i < q.Length; i++) {
int occurrence = prefixSum[q[i]];
result.Add(occurrence);
}
}
// Driver Code
public static void Main()
{
int[,] arr
= { { 1, 5 }, { 3, 6 }, { 5, 7 }, { 12, 15 } };
int[] query = { 1, 3, 5, 13 };
List<int> result
= new List<int>();
// Function call
findTheOccurrence(arr, query, result);
foreach (int i in result)
Console.Write(i + " ");
}
}
// This code is contributed by avijitmondal998.
JavaScript
<script>
// JS code to implement the approach
let MAX = 10000;
// Function to find occurrences of
// each element in array
function findTheOccurrence(arr, q, result)
{
prefixSum = new Array(MAX).fill(0);
// Iterating over arr
for (var i = 0; i < arr.length; i++)
{
var start = arr[i][0];
var end = arr[i][1];
// Increment the value of
// prefixSum at start
prefixSum[start]++;
// Decrement the value of
// prefixSum at end + 1
prefixSum[end + 1]--;
}
// Calculating the prefix sum
for (var i = 1; i < prefixSum.length; i++) {
prefixSum[i] = prefixSum[i - 1] + prefixSum[i];
}
// Resolving each queries
for (var i = 0; i < q.length; i++) {
var occurrence = prefixSum[q[i]];
result.push(occurrence);
}
return result;
}
// Driver code
var arr = [[ 1, 5 ], [ 3, 6 ], [ 5, 7 ], [ 12, 15 ] ];
var query = [ 1, 3, 5, 13 ];
var result = [];
// Function call
findTheOccurrence(arr, query, result);
for (var i = 0; i < result.length; i++)
document.write(result[i] + " ");
// This code is contributed by phasing17
</script>
Time Complexity: O(M), where M is the maximum element of the array.
Auxiliary Space: O(MAX)
Note: This approach will not work here because of the given constraints
Space Optimized approach: The idea is similar to the above approach, but there will be the following changes:
We will use a map to store the frequency of elements in given ranges instead of creating a prefix sum array. If the range of elements in arr[] is high as 109 then we can not create such a big length array. But in the map (ordered map) we can calculate the prefix sum while iterating over the map and can perform the rest of the operations as done in the above approach.
Follow the steps below to implement the above idea:
- Create a map (ordered map), where the key represents the element and the value represents the frequency of the key.
- Iterate over arr[]:
- Increment the frequency of starti by 1
- Decrement the frequency of (endi + 1) by 1
- Initialize two arrays to store the elements that appear in the map and the frequencies corresponding to that element.
- Iterate over the map and use prefix sum technique to calculate the frequency of each element and store them in the created arrays.
- Iterate over the query array and for each query:
- Find the closest integer (say x) which just greater or equal to query[i] and is present in the map.
- Check if x and query[i] are the same:
- If they are the same then the corresponding frequency of x is the required frequency.
- Otherwise, the frequency of the elements corresponding to the element just before x is the answer.
- Store this frequency in the resultant array.
- Return the result array.
Below is the implementation of the above approach:
C++
// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the frequency
// of element in array arr
vector<int> findTheOccurrence(vector<vector<int> >& arr,
vector<int>& q,
vector<int>& result)
{
int n = arr.size();
// Map to store the elements
// with their frequency
map<long long, long long> mp;
for (auto& i : arr) {
mp[i[0]]++;
mp[(long long)i[1] + 1]--;
}
vector<long long> range, freq;
long long prefixSum = 0;
for (auto i : mp) {
// Calculate the frequency of element
// using prefix sum technique.
prefixSum = prefixSum
+ (long long)i.second;
// Store the element of arr in range
range.push_back(i.first);
// Store its corresponding frequency
freq.push_back(prefixSum);
}
// Iterate over the query
for (auto p : q) {
// Find the lower_bound of query p
int idx = lower_bound(range.begin(),
range.end(), p)
- range.begin();
// If the lower_bound doesn't exist
if (idx >= 0 && idx < range.size()) {
// Check if element
// which we are searching
// exists in the range or not.
// If it doesn't exist then
// lower bound will return
// the next element which is
// just greater than p
if (range[idx] != p)
idx--;
if (idx >= 0)
result.push_back(freq[idx]);
// If no such element exist
else
result.push_back(0);
}
// If idx is range size,
// it means all elements
// are smaller than p.
// So next smaller element will be
// at range.size() - 1
else {
result.push_back(freq[range.size()
- 1]);
}
}
// Return the final result
return result;
}
// Driver code
int main()
{
vector<vector<int> > arr
= { { 1, 5 }, { 3, 6 }, { 5, 7 }, { 12, 15 } };
vector<int> q = { 1, 3, 5, 13 };
vector<int> result;
// Function call
findTheOccurrence(arr, q, result);
for (auto i : result)
cout << i << " ";
return 0;
}
Java
// Java code to implement the approach
import java.util.*;
class GFG
{
// This function returns the position
// of the leftmost array element that is
// greater than or equal to the key element
static int lower_bound(ArrayList<Integer> arr, int ele)
{
for (var i = 0; i < arr.size(); i++) {
if (arr.get(i) >= ele)
return i;
}
return arr.size();
}
// Function to find the frequency
// of element in array arr
static ArrayList<Integer>
findTheOccurrence(int[][] arr, int[] q,
ArrayList<Integer> result)
{
int n = arr.length;
// Map to store the elements
// with their frequency
TreeMap<Integer, Integer> mp
= new TreeMap<Integer, Integer>();
for (int i = 0; i < arr.length; i++) {
if (!mp.containsKey(arr[i][0]))
mp.put(arr[i][0], 0);
if (!mp.containsKey(arr[i][1] + 1))
mp.put(arr[i][1] + 1, 0);
mp.put(arr[i][0], mp.get(arr[i][0]) + 1);
mp.put(arr[i][1] + 1,
mp.get(arr[i][1] + 1) - 1);
}
ArrayList<Integer> range = new ArrayList<Integer>();
ArrayList<Integer> freq = new ArrayList<Integer>();
int prefixSum = 0;
for (Map.Entry<Integer, Integer> i :
mp.entrySet()) {
// Calculate the frequency of element
// using prefix sum technique.
prefixSum = prefixSum + i.getValue();
// Store the element of arr in range
range.add(i.getKey());
// Store its corresponding frequency
freq.add(prefixSum);
}
// Iterate over the query
for (Integer p : q) {
// Find the lower_bound of query p
int idx = lower_bound(range, p);
// If the lower_bound doesn't exist
if (idx >= 0 && idx < range.size()) {
// Check if element
// which we are searching
// exists in the range or not.
// If it doesn't exist then
// lower bound will return
// the next element which is
// just greater than p
if (range.get(idx) != p)
idx--;
if (idx >= 0)
result.add(freq.get(idx));
// If no such element exist
else
result.add(0);
}
// If idx is range size,
// it means all elements
// are smaller than p.
// So next smaller element will be
// at range.size() - 1
else {
result.add(freq.get(range.size() - 1));
}
}
// Return the final result
return result;
}
// Driver code
public static void main(String[] args)
{
int[][] arr
= { { 1, 5 }, { 3, 6 }, { 5, 7 }, { 12, 15 } };
int[] q = { 1, 3, 5, 13 };
ArrayList<Integer> result
= new ArrayList<Integer>();
// Function call
findTheOccurrence(arr, q, result);
for (Integer i : result)
System.out.print(i + " ");
}
}
// This code is contributed by phasing17
Python3
# Python3 code to implement the approach
import bisect
# Function to find the frequency
# of element in array arr
def findTheOccurrence(arr, q, result):
n = len(arr)
# Map to store the elements
# with their frequency
mp = {}
for i in arr:
if i[0] not in mp:
mp[i[0]] = 0
if (i[1] + 1) not in mp:
mp[i[1] + 1] = 0
mp[i[0]] += 1
mp[i[1] + 1] -= 1
range = []
freq = []
prefixSum = 0
for i in sorted(mp.keys()):
# Calculate the frequency of element
# using prefix sum technique.
prefixSum = prefixSum + mp[i]
# Store the element of arr in range
range.append(i)
# Store its corresponding frequency
freq.append(prefixSum)
# Iterate over the query
for p in q:
# Find the lower_bound of query p
idx = bisect.bisect_left(range, p)
# If the lower_bound doesn't exist
if (idx >= 0 and idx < len(range)):
# Check if element
# which we are searching
# exists in the range or not.
# If it doesn't exist then
# lower bound will return
# the next element which is
# just greater than p
if (range[idx] != p):
idx -= 1
if (idx >= 0):
result.append(freq[idx])
# If no such element exist
else:
result.append(0)
# If idx is range size,
# it means all elements
# are smaller than p.
# So next smaller element will be
# at range.size() - 1
else :
result.append(freq[len(range) - 1])
# Return the final result
return result
# Driver code
arr = [[ 1, 5 ], [ 3, 6 ], [ 5, 7 ], [ 12, 15 ] ]
q = [ 1, 3, 5, 13 ]
result = []
# Function call
result = findTheOccurrence(arr, q, result);
print(" ".join(list(map(str, result))))
# This code is contributed by phasing17
C#
// C# code to implement the approach
using System;
using System.Collections.Generic;
class GFG {
// This function returns the position
// of the leftmost array element that is
// greater than or equal to the key element
static int lower_bound(List<int> arr, int ele)
{
for (var i = 0; i < arr.Count; i++) {
if (arr[i] >= ele)
return i;
}
return arr.Count;
}
// Function to find the frequency
// of element in array arr
static List<int> findTheOccurrence(int[, ] arr, int[] q,
List<int> result)
{
// Map to store the elements
// with their frequency
Dictionary<int, int> mp
= new Dictionary<int, int>();
for (int i = 0; i < arr.GetLength(0); i++) {
if (!mp.ContainsKey(arr[i, 0]))
mp[arr[i, 0]] = 0;
if (!mp.ContainsKey(arr[i, 1] + 1))
mp[arr[i, 1] + 1] = 0;
mp[arr[i, 0]] += 1;
mp[arr[i, 1] + 1] -= 1;
}
List<int> range = new List<int>();
List<int> freq = new List<int>();
int prefixSum = 0;
var mpKeys = new List<int>(mp.Keys);
mpKeys.Sort();
foreach(var i in mpKeys)
{
// Calculate the frequency of element
// using prefix sum technique.
prefixSum = prefixSum + mp[i];
// Store the element of arr in range
range.Add(i);
// Store its corresponding frequency
freq.Add(prefixSum);
}
// Iterate over the query
foreach(var p in q)
{
// Find the lower_bound of query p
int idx = lower_bound(range, p);
// If the lower_bound doesn't exist
if (idx >= 0 && idx < range.Count) {
// Check if element
// which we are searching
// exists in the range or not.
// If it doesn't exist then
// lower bound will return
// the next element which is
// just greater than p
if (range[idx] != p)
idx--;
if (idx >= 0)
result.Add(freq[idx]);
// If no such element exist
else
result.Add(0);
}
// If idx is range size,
// it means all elements
// are smaller than p.
// So next smaller element will be
// at range.size() - 1
else {
result.Add(freq[range.Count - 1]);
}
}
// Return the final result
return result;
}
// Driver code
public static void Main(string[] args)
{
int[, ] arr
= { { 1, 5 }, { 3, 6 }, { 5, 7 }, { 12, 15 } };
int[] q = { 1, 3, 5, 13 };
List<int> result = new List<int>();
// Function call
findTheOccurrence(arr, q, result);
foreach(var i in result) Console.Write(i + " ");
}
}
// This code is contributed by phasing17
JavaScript
// JavaScript code to implement the approach
//This function returns the position
//of the leftmost array element that is
//greater than or equal to the key element
function lower_bound(arr, ele)
{
for (var i = 0; i < arr.length; i++)
{
if (arr[i] >= ele)
return i;
}
return arr.length - 1;
}
// Function to find the frequency
// of element in array arr
function findTheOccurrence(arr, q, result)
{
let n = arr.length;
// Map to store the elements
// with their frequency
let mp = {};
for (var i of arr) {
if (!mp.hasOwnProperty(i[0]))
mp[i[0]] = 0;
if (!mp.hasOwnProperty(i[1] + 1))
mp[i[1] + 1] = 0;
mp[i[0]]++;
mp[i[1] + 1]--;
}
let range = [];
let freq = [];
let prefixSum = 0;
for (let [i, val] of Object.entries(mp)) {
// Calculate the frequency of element
// using prefix sum technique.
prefixSum = prefixSum + val;
// Store the element of arr in range
range.push(parseInt(i));
// Store its corresponding frequency
freq.push(prefixSum);
}
// Iterate over the query
for (var p of q) {
// Find the lower_bound of query p
let idx = lower_bound(range, p);
// If the lower_bound doesn't exist
if (idx >= 0 && idx < range.length) {
// Check if element
// which we are searching
// exists in the range or not.
// If it doesn't exist then
// lower bound will return
// the next element which is
// just greater than p
if (range[idx] != p)
idx--;
if (idx >= 0)
result.push(freq[idx]);
// If no such element exist
else
result.push(0);
}
// If idx is range size,
// it means all elements
// are smaller than p.
// So next smaller element will be
// at range.size() - 1
else {
result.push(freq[range.length - 1]);
}
}
// Return the final result
return result;
}
// Driver code
let arr = [[ 1, 5 ], [ 3, 6 ], [ 5, 7 ], [ 12, 15 ] ];
let q = [ 1, 3, 5, 13 ];
let result = [];
// Function call
result = findTheOccurrence(arr, q, result);
for (var i of result)
process.stdout.write(i + " ");
//This code is contributed by phasing17
Time Complexity: O(N * log(N))
Auxiliary Space: O(N)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem