Find absolute difference between product of rowwise and columnwise min and max in given Matrix
Last Updated :
01 Nov, 2022
Given a square matrix M[][] of size N x N, the task is to find the maximums & minimums of each of the rows and columns, multiply the corresponding maximums & minimums of each row with those of each column, Finally return the absolute difference of both of these.
Examples:
Input: M[][] = [ [ 3, 2, 5 ], [ 7, 5, 4 ], [ 7, 2, 9 ] ]
Output: 11
Explanation:

Input: M = [ [1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]
Output: 40
Naive Approach: The task can be solved by simulating the given operations. Follow the below steps to solve the problem:
- Take 2 arrays max1[ ] and min1[ ] for storing the maximum and minimum of each row or each column.
- First store the maximum of each row in max1[ ] and a minimum of each row in min1[ ].
- Multiple both matrix and return res, store it in R.
- Take transpose of matrix M[ ].
- Then store the maximum of each column in max1[ ] and the minimum of each column in min1[ ].
- Multiply both matrices and return res, store it in C.
- Print absolute difference of R and C.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
// Function to find the transpose matrix M[]
vector<vector<int>> transpose(vector<vector<int>>M, int N){
for(int i = 0; i < N; i++)
{
for(int j = 0; j < i + 1; j++)
{
int temp = M[i][j];
M[i][j] = M[j][i];
M[j][i] = temp;
}
}
return M;
}
// Function to convert matrix M[][] to size 1 * 1
int matOne(vector<vector<int>>M, int N)
{
// Max1 and min1 to store max and min
// of each row pr column
vector<int>max1;
vector<int>min1;
// Loop to store element in max1 and min1
for(int r = 0; r < N; r++)
{
max1.push_back(*max_element(M[r].begin(), M[r].end()));
min1.push_back(*min_element(M[r].begin(), M[r].end()));
}
// Initialise res to 0
int res = 0;
// Multiply and add both array
for(int i = 0; i < N; i++){
res += max1[i]*min1[i];
}
// Return res
return res;
}
// Driver code
int main()
{
// Original matrix
vector<vector<int>>M = {{3, 2, 5},{7, 5, 4},{7, 2, 9}};
// N size of matrix
int N = M.size();
// Call matOne function for rows
int R = matOne(M, N);
// Transpose the matrix
vector<vector<int>>T = transpose(M, N);
// Call matOne function for column
int C = matOne(T, N);
// Print the absolute difference
cout << abs(R - C) << endl;
}
// This code is contributed by shinjanpatra
Java
// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG
{
// Function to find the transpose matrix M[]
static int[][] transpose(int[][] M, int N) {
int transpose[][] = new int[N][N];
// Code to transpose a matrix
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
transpose[i][j] = M[j][i];
}
}
return transpose;
}
// Function to convert matrix M[][] to size 1 * 1
static int matOne(int[][] M, int N) {
// Max1 and min1 to store max and min
// of each row pr column
ArrayList<Integer> max1 = new ArrayList<Integer>();
ArrayList<Integer> min1 = new ArrayList<Integer>();
// Loop to calculate res.
for (int[] r : M)
{
max1.add(Arrays.stream(r).max().getAsInt());
min1.add(Arrays.stream(r).min().getAsInt());
}
// Initialise res to 0
int res = 0;
// Multiply and add both array
for(int i = 0; i < N; i++)
{
res += max1.get(i)*min1.get(i);
}
// Return res
return res;
}
// Driver code
public static void main(String[] args)
{
// Original matrix
int[][] M = { { 3, 2, 5 }, { 7, 5, 4 }, { 7, 2, 9 } };
// N size of matrix
int N = M.length;
// Call matOne function for rows
int R = matOne(M, N);
// Transpose the matrix
int[][] T = transpose(M, N);
// Call matOne function for column
int C = matOne(T, N);
// Print the absolute difference
System.out.println((Math.abs(R - C)));
}
}
// This code is contributed by aditya patil
Python3
# Python program for the above approach
# Function to find the transpose matrix M[]
def transpose(M, N):
for i in range(N):
for j in range(i + 1):
M[i][j], M[j][i] = M[j][i], M[i][j]
return M
# Function to convert matrix M[][] to size 1 * 1
def matOne(M, N):
# Max1 and min1 to store max and min
# of each row pr column
max1 = []
min1 = []
# Loop to store element in max1 and min1
for r in M:
max1.append(max(r))
min1.append(min(r))
# Initialise res to 0
res = 0
# Multiply and add both array
for i in range(N):
res += max1[i]*min1[i]
# Return res
return res
# Driver code
if __name__ == "__main__":
# Original matrix
M = [[3, 2, 5],
[7, 5, 4],
[7, 2, 9]]
# N size of matrix
N = len(M)
# Call matOne function for rows
R = matOne(M, N)
# Transpose the matrix
T = transpose(M, N)
# Call matOne function for column
C = matOne(T, N)
# Print the absolute difference
print(str(abs(R-C)))
C#
// C# program for the above approach
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
public class GFG {
// Function to find the transpose matrix []M
static int[, ] transpose(int[, ] M, int N)
{
int[, ] transpose = new int[N, N];
// Code to transpose a matrix
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
transpose[i, j] = M[j, i];
}
}
return transpose;
}
// Function to convert matrix M[][] to size 1 * 1
static int matOne(int[, ] M, int N)
{
// Max1 and min1 to store max and min
// of each row pr column
ArrayList max1 = new ArrayList();
ArrayList min1 = new ArrayList();
// Loop to calculate res.
for (int r = 0; r < N; r++) {
int[] t = new int[N];
for (int j = 0; j < N; j++) {
t[j] = M[r, j];
}
min1.Add(t.Min());
max1.Add(t.Max());
}
// Initialise res to 0
int res = 0;
// Multiply and add both array
for (int i = 0; i < N; i++) {
res += (int)max1[i] * (int)min1[i];
}
// Return res
return res;
}
static public void Main()
{
// Code
// Original matrix
int[, ] M
= { { 3, 2, 5 }, { 7, 5, 4 }, { 7, 2, 9 } };
// N size of matrix
int N = M.GetLength(0);
// Call matOne function for rows
int R = matOne(M, N);
// Transpose the matrix
int[, ] T = transpose(M, N);
// Call matOne function for column
int C = matOne(T, N);
// Print the absolute difference
Console.WriteLine((Math.Abs(R - C)));
}
}
// This code is contributed by lokeshmvs21.
JavaScript
<script>
// Javascript program for the above approach
// Function to find the transpose matrix M[]
function transpose(M) {
return M[0].map((col, i) => M.map(row => row[i]));
}
// Function to convert matrix M[][] to size 1 * 1
function matOne(M, N) {
// Max1 and min1 to store max and min
// of each row pr column
let max1 = []
let min1 = []
// Loop to store element in max1 and min1
for (r of M){
max1.push([...r].sort((a, b) => b - a)[0])
min1.push([...r].sort((a, b) => a - b)[0])
}
// Initialise res to 0
let res = 0
// Multiply and add both array
for (let i = 0; i < N; i++)
res += max1[i] * min1[i]
// Return res
return res
}
// Driver code
// Original matrix
let M = [[3, 2, 5], [7, 5, 4], [7, 2, 9]];
// N size of matrix
let N = M.length;
// Call matOne function for rows
let R = matOne(M, N)
// Transpose the matrix
let T = transpose(M)
// Call matOne function for column
let C = matOne(T, N)
// Print the absolute difference
document.write(Math.abs(R - C))
// This code is contributed by saurabh_jaiswal.
</script>
Time Complexity: O(N2)
Auxiliary Space: O(N)
Space Optimized Approach: This approach is similar to approach 1, but in this, the auxiliary space will be optimized by not using max1 and min1 arrays. In this, direct multiple and add the element and return it.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
// Function to find the transpose matrix M[]
vector<vector<int>> transpose(vector<vector<int>>M, int N){
for(int i = 0; i < N; i++)
{
for(int j = 0; j < i + 1; j++)
{
int temp = M[i][j];
M[i][j] = M[j][i];
M[j][i] = temp;
}
}
return M;
}
// Function to convert matrix M[][] to size 1 * 1
int matOne(vector<vector<int>>M, int N)
{
// Max1 and min1 to store max and min
// of each row pr column
vector<int>arr;
int res = 0;
for (int r =0;r< N;r++){
arr.clear();
for(int j =0;j<N;j++){
arr.push_back(M[r][j]);
}
sort(arr.begin(),arr.end());
res += arr[arr.size()-1] * arr[0];
}
// Return res
return res;
}
// Driver code
int main()
{
// Original matrix
vector<vector<int>>M = {{3, 2, 5},{7, 5, 4},{7, 2, 9}};
// N size of matrix
int N = M.size();
// Call matOne function for rows
int R = matOne(M, N);
// Transpose the matrix
vector<vector<int>>T = transpose(M, N);
// Call matOne function for column
int C = matOne(T, N);
// Print the absolute difference
cout << abs(R - C) << endl;
}
// This code is contributed by akshitsaxenaa09.
Java
import java.util.Arrays;
// Java program for the above approach
class GFG
{
// Function to find the transpose matrix M[]
static int[][] transpose(int[][] M, int N) {
int transpose[][] = new int[N][N];
// Code to transpose a matrix
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
transpose[i][j] = M[j][i];
}
}
return transpose;
}
// Function to convert matrix M[][] to size 1 * 1
static int matOne(int[][] M, int N) {
// Loop to calculate res.
int res = 0;
for (int[] r : M)
res += Arrays.stream(r).max().getAsInt() * Arrays.stream(r).min().getAsInt();
// Return res
return res;
}
// Driver code
public static void main(String[] args)
{
// Original matrix
int[][] M = { { 3, 2, 5 }, { 7, 5, 4 }, { 7, 2, 9 } };
// N size of matrix
int N = M.length;
// Call matOne function for rows
int R = matOne(M, N);
// Transpose the matrix
int[][] T = transpose(M, N);
// Call matOne function for column
int C = matOne(T, N);
// Print the absolute difference
System.out.println((Math.abs(R - C)));
}
}
// This code is contributed by 29AjayKumar
Python3
# Python program for the above approach
# Function to find the transpose matrix M[]
def transpose(M, N):
for i in range(N):
for j in range(i + 1):
M[i][j], M[j][i] = M[j][i], M[i][j]
return M
# Function to convert matrix M[][] to size 1 * 1
def matOne(M, N):
# Loop to calculate res.
res = 0
for r in M:
res += max(r)*min(r)
# Return res
return res
# Driver code
if __name__ == "__main__":
# Original matrix
M = [[3, 2, 5],
[7, 5, 4],
[7, 2, 9]]
# N size of matrix
N = len(M)
# Call matOne function for rows
R = matOne(M, N)
# Transpose the matrix
T = transpose(M, N)
# Call matOne function for column
C = matOne(T, N)
# Print the absolute difference
print(str(abs(R-C)))
C#
// C# program for the above approach
using System;
using System.Linq;
public class GFG
{
// Function to find the transpose matrix []M
static int[,] transpose(int[,] M, int N)
{
int [,]transpose = new int[N,N];
// Code to transpose a matrix
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
transpose[i,j] = M[j,i];
}
}
return transpose;
}
// Function to convert matrix [,]M to size 1 * 1
static int matOne(int[,] M, int N) {
// Loop to calculate res.
int res = 0;
for (int r =0;r< N;r++){
int[] t = new int[N];
for(int j =0;j<N;j++){
t[j] = M[r,j];
}
res += t.Max() * t.Min();
}
// Return res
return res;
}
// Driver code
public static void Main(String[] args)
{
// Original matrix
int[,] M = { { 3, 2, 5 }, { 7, 5, 4 }, { 7, 2, 9 } };
// N size of matrix
int N = M.GetLength(0);
// Call matOne function for rows
int R = matOne(M, N);
// Transpose the matrix
int[,] T = transpose(M, N);
// Call matOne function for column
int C = matOne(T, N);
// Print the absolute difference
Console.WriteLine((Math.Abs(R - C)));
}
}
// This code is contributed by umadevi9616
JavaScript
<script>
// JavaScript code for the above approach
// Function to find the transpose matrix M[]
function transpose(M, N)
{
// This function stores transpose
// of A in B
let B = Array(M).fill(0);
for (let i = 0; i < N; i++) {
B[i] = new Array(N);
}
var i, j;
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
B[i][j] = M[j][i];
return B
}
// Function to convert matrix M[][] to size 1 * 1
function matOne(M, N) {
// Max1 and min1 to store max and min
// of each row pr column
max1 = []
min1 = []
// Loop to store element in max1 and min1
for (let i = 0; i < M.length; i++) {
r = M[i]
max1.push(Math.max(...r))
min1.push(Math.min(...r))
}
// Initialise res to 0
res = 0
// Multiply and add both array
for (let i = 0; i < N; i++)
res += (max1[i] * min1[i])
// Return res
return res
}
// Driver code
// Original matrix
let M = [[3, 2, 5],
[7, 5, 4],
[7, 2, 9]]
// N size of matrix
let N = M.length
// Call matOne function for rows
let R = matOne(M, N)
// Transpose the matrix
T = transpose(M, N)
// Call matOne function for column
C = matOne(T, N)
// Print the absolute difference
document.write(Math.abs(R - C))
// This code is contributed by Potta Lokesh
</script>
Time Complexity: O(N2log(N))
Auxiliary Space: O(N) because using extra space for array
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem