Find a partition point in array to maximize its xor sum
Last Updated :
13 Oct, 2022
Given an array a of size N. The task is to find an index 'i' (1 <= i <= N) such that (a[1] ^ ... ^ a[i]) + (a[i+1] ^ ... ^ a[N]) (x^y represents the xor value of x and y) is maximum possible.
Examples:
Input : arr[] = {1, 4, 6, 3, 8, 13, 34, 2, 21, 10}
Output : 2
Explanation : The maximum value is 68 at index 2
Input : arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9}
Output : 4
Naive Approach: A naive approach is to use nested loops. Traverse the array and find the xor of the array till the i’th index and find the xor of elements from index i+1 to and calculate the maximum sum possible.
Below is the implementation of the above approach:
C++
// CPP program to find partition point in
// array to maximize xor sum
#include <bits/stdc++.h>
using namespace std;
// Function to find partition point in
// array to maximize xor sum
int Xor_Sum(int arr[], int n)
{
int sum = 0, index, left_xor = 0, right_xor = 0;
// Traverse through the array
for (int i = 0; i < n; i++)
{
// Calculate xor of elements left of index i
// including ith element
left_xor = left_xor ^ arr[i];
right_xor = 0;
for (int j = i + 1; j < n; j++)
{
// Calculate xor of the elements right of
// index i
right_xor = right_xor ^ arr[j];
}
// Keep the maximum possible xor sum
if (left_xor + right_xor > sum)
{
sum = left_xor + right_xor;
index = i;
}
}
// Return the 1 based index of the array
return index+1;
}
// Driver code
int main()
{
int arr[] = { 1, 4, 6, 3, 8, 13, 34, 2, 21, 10 };
int n = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << Xor_Sum(arr, n);
return 0;
}
Java
// Java program to find partition point in
// array to maximize xor sum
class GFG
{
// Function to find partition point in
// array to maximize xor sum
public static int Xor_Sum(int[] arr, int n)
{
int sum = 0, index = -1;
int left_xor = 0, right_xor = 0;
// Traverse through the array
for (int i = 0; i < n; i++)
{
// Calculate xor of elements left of index i
// including ith element
left_xor = left_xor ^ arr[i];
right_xor = 0;
for (int j = i + 1; j < n; j++)
{
// Calculate xor of the elements right of
// index i
right_xor = right_xor ^ arr[j];
}
// Keep the maximum possible xor sum
if (left_xor + right_xor > sum)
{
sum = left_xor + right_xor;
index = i;
}
}
// Return the 1 based index of the array
return index + 1;
}
// Driver code
public static void main(String[] args)
{
int[] arr = { 1, 4, 6, 3, 8,
13, 34, 2, 21, 10 };
int n = arr.length;
// Function call
System.out.println(Xor_Sum(arr, n));
}
}
// This code is contributed by sanjeev2552
Python3
# Python3 program to find partition point in
# array to maximize xor sum
# Function to find partition point in
# array to maximize xor sum
def Xor_Sum(arr, n):
sum = 0
index, left_xor = 0, 0
right_xor = 0
# Traverse through the array
for i in range(n):
# Calculate xor of elements left of index i
# including ith element
left_xor = left_xor ^ arr[i]
right_xor = 0
for j in range(i + 1, n):
# Calculate xor of the elements
# right of index i
right_xor = right_xor ^ arr[j]
# Keep the maximum possible xor sum
if (left_xor + right_xor > sum):
sum = left_xor + right_xor
index = i
# Return the 1 based index of the array
return index + 1
# Driver code
arr = [ 1, 4, 6, 3, 8,
13, 34, 2, 21, 10]
n = len(arr)
# Function call
print(Xor_Sum(arr, n))
# This code is contributed by Mohit Kumar
C#
// C# program to find partition point in
// array to maximize xor sum
using System;
class GFG
{
// Function to find partition point in
// array to maximize xor sum
public static int Xor_Sum(int[] arr,
int n)
{
int sum = 0, index = -1;
int left_xor = 0, right_xor = 0;
// Traverse through the array
for (int i = 0; i < n; i++)
{
// Calculate xor of elements left of index i
// including ith element
left_xor = left_xor ^ arr[i];
right_xor = 0;
for (int j = i + 1; j < n; j++)
{
// Calculate xor of the elements
// right of index i
right_xor = right_xor ^ arr[j];
}
// Keep the maximum possible xor sum
if (left_xor + right_xor > sum)
{
sum = left_xor + right_xor;
index = i;
}
}
// Return the 1 based index of the array
return index + 1;
}
// Driver code
public static void Main(String[] args)
{
int[] arr = { 1, 4, 6, 3, 8,
13, 34, 2, 21, 10 };
int n = arr.Length;
// Function call
Console.WriteLine (Xor_Sum(arr, n));
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
// Javascript program to
// find partition point in
// array to maximize xor sum
// Function to find partition point in
// array to maximize xor sum
function Xor_Sum(arr, n)
{
let sum = 0, index, left_xor = 0,
right_xor = 0;
// Traverse through the array
for (let i = 0; i < n; i++)
{
// Calculate xor of elements
// left of index i
// including ith element
left_xor = left_xor ^ arr[i];
right_xor = 0;
for (let j = i + 1; j < n; j++)
{
// Calculate xor of the
// elements right of
// index i
right_xor = right_xor ^ arr[j];
}
// Keep the maximum possible xor sum
if (left_xor + right_xor > sum)
{
sum = left_xor + right_xor;
index = i;
}
}
// Return the 1 based index of the array
return index+1;
}
// Driver code
let arr = [ 1, 4, 6, 3, 8, 13, 34, 2, 21, 10 ];
let n = arr.length;
// Function call
document.write(Xor_Sum(arr, n));
</script>
Time complexity: O( N^2 )
Auxiliary space: O(1)
Efficient Approach: An efficient approach is to use a prefix xor array. At any index ‘i’ PrefixXor[i] gives us arr[1] ^ arr[1] ^....^ arr[i] and to get arr[i+1] ^ arr[i+2] ^ . . ^ arr[n-1], find PrefixXor[i] ^ PrefixXor[n] .
Below is the implementation of the above approach:
C++
// CPP program to find partition point in
// array to maximize xor sum
#include <bits/stdc++.h>
using namespace std;
// Function to calculate Prefix Xor array
void ComputePrefixXor(int arr[], int PrefixXor[], int n)
{
PrefixXor[0] = arr[0];
// Calculating prefix xor
for (int i = 1; i < n; i++)
PrefixXor[i] = PrefixXor[i - 1] ^ arr[i];
}
// Function to find partition point in
// array to maximize xor sum
int Xor_Sum(int arr[], int n)
{
// To store prefix xor
int PrefixXor[n];
// Compute the prefix xor
ComputePrefixXor(arr, PrefixXor, n);
// To store sum and index
int sum = 0, index;
// Calculate the maximum sum that can be obtained
// splitting the array at some index i
for (int i = 0; i < n; i++)
{
// PrefixXor[i] = Xor of all arr
// elements till i'th index PrefixXor[n-1]
// ^ PrefixXor[i] = Xor of all elements
// from i+1' th index to n-1'th index
if (PrefixXor[i] + (PrefixXor[n - 1] ^
PrefixXor[i]) > sum)
{
sum = PrefixXor[i] +
(PrefixXor[n - 1] ^ PrefixXor[i]);
index = i;
}
}
// Return the index
return index+1;
}
// Driver code
int main()
{
int arr[] = { 1, 4, 6, 3, 8, 13, 34, 2, 21, 10 };
int n = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << Xor_Sum(arr, n);
return 0;
}
Java
// Java program to find partition point in
// array to maximize xor sum
import java.util.*;
class GFG
{
// Function to calculate Prefix Xor array
static void ComputePrefixXor(int arr[],
int PrefixXor[],
int n)
{
PrefixXor[0] = arr[0];
// Calculating prefix xor
for (int i = 1; i < n; i++)
PrefixXor[i] = PrefixXor[i - 1] ^ arr[i];
}
// Function to find partition point in
// array to maximize xor sum
static int Xor_Sum(int arr[], int n)
{
// To store prefix xor
int []PrefixXor = new int[n];
// Compute the prefix xor
ComputePrefixXor(arr, PrefixXor, n);
// To store sum and index
int sum = 0, index = 0;
// Calculate the maximum sum that can be obtained
// splitting the array at some index i
for (int i = 0; i < n; i++)
{
// PrefixXor[i] = Xor of all arr
// elements till i'th index PrefixXor[n-1]
// ^ PrefixXor[i] = Xor of all elements
// from i+1' th index to n-1'th index
if (PrefixXor[i] + (PrefixXor[n - 1] ^
PrefixXor[i]) > sum)
{
sum = PrefixXor[i] +
(PrefixXor[n - 1] ^ PrefixXor[i]);
index = i;
}
}
// Return the index
return index+1;
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 1, 4, 6, 3, 8,
13, 34, 2, 21, 10 };
int n = arr.length;
// Function call
System.out.println(Xor_Sum(arr, n));
}
}
// This code is contributed by 29AjayKumar
Python3
# Python3 program to find partition point in
# array to maximize xor sum
# Function to calculate Prefix Xor array
def ComputePrefixXor(arr, PrefixXor, n):
PrefixXor[0] = arr[0];
# Calculating prefix xor
for i in range(1, n):
PrefixXor[i] = PrefixXor[i - 1] ^ arr[i];
# Function to find partition point in
# array to maximize xor sum
def Xor_Sum(arr, n):
# To store prefix xor
PrefixXor = [0] * n;
# Compute the prefix xor
ComputePrefixXor(arr, PrefixXor, n);
# To store sum and index
sum, index = 0, 0;
# Calculate the maximum sum that can be obtained
# splitting the array at some index i
for i in range(n):
# PrefixXor[i] = Xor of all arr
# elements till i'th index PrefixXor[n-1]
# ^ PrefixXor[i] = Xor of all elements
# from i+1' th index to n-1'th index
if (PrefixXor[i] + (PrefixXor[n - 1] ^
PrefixXor[i]) > sum):
sum = PrefixXor[i] +\
(PrefixXor[n - 1] ^ PrefixXor[i]);
index = i;
# Return the index
return index + 1;
# Driver code
arr = [ 1, 4, 6, 3, 8, 13, 34, 2, 21, 10 ];
n = len(arr);
# Function call
print(Xor_Sum(arr, n));
# This code is contributed by Rajput-Ji
C#
// C# program to find partition point in
// array to maximize xor sum
using System;
class GFG
{
// Function to calculate Prefix Xor array
static void ComputePrefixXor(int[] arr,
int[] PrefixXor,
int n)
{
PrefixXor[0] = arr[0];
// Calculating prefix xor
for (int i = 1; i < n; i++)
PrefixXor[i] = PrefixXor[i - 1] ^ arr[i];
}
// Function to find partition point in
// array to maximize xor sum
static int Xor_Sum(int[] arr, int n)
{
// To store prefix xor
int []PrefixXor = new int[n];
// Compute the prefix xor
ComputePrefixXor(arr, PrefixXor, n);
// To store sum and index
int sum = 0, index = 0;
// Calculate the maximum sum that can be obtained
// splitting the array at some index i
for (int i = 0; i < n; i++)
{
// PrefixXor[i] = Xor of all arr
// elements till i'th index PrefixXor[n-1]
// ^ PrefixXor[i] = Xor of all elements
// from i+1' th index to n-1'th index
if (PrefixXor[i] + (PrefixXor[n - 1] ^
PrefixXor[i]) > sum)
{
sum = PrefixXor[i] + (PrefixXor[n - 1] ^
PrefixXor[i]);
index = i;
}
}
// Return the index
return index + 1;
}
// Driver code
public static void Main()
{
int[] arr = { 1, 4, 6, 3, 8,
13, 34, 2, 21, 10 };
int n = arr.Length;
// Function call
Console.WriteLine(Xor_Sum(arr, n));
}
}
// This code is contributed by Code_Mech
JavaScript
<script>
// Javascript program to find partition point in
// array to maximize xor sum
// Function to calculate Prefix Xor array
function ComputePrefixXor(arr, PrefixXor, n)
{
PrefixXor[0] = arr[0];
// Calculating prefix xor
for (let i = 1; i < n; i++)
PrefixXor[i] = PrefixXor[i - 1] ^ arr[i];
}
// Function to find partition point in
// array to maximize xor sum
function Xor_Sum(arr, n)
{
// To store prefix xor
let PrefixXor = new Array(n);
// Compute the prefix xor
ComputePrefixXor(arr, PrefixXor, n);
// To store sum and index
let sum = 0, index;
// Calculate the maximum sum that can be obtained
// splitting the array at some index i
for (let i = 0; i < n; i++)
{
// PrefixXor[i] = Xor of all arr
// elements till i'th index PrefixXor[n-1]
// ^ PrefixXor[i] = Xor of all elements
// from i+1' th index to n-1'th index
if (PrefixXor[i] + (PrefixXor[n - 1] ^
PrefixXor[i]) > sum)
{
sum = PrefixXor[i] +
(PrefixXor[n - 1] ^ PrefixXor[i]);
index = i;
}
}
// Return the index
return index+1;
}
// Driver code
let arr = [ 1, 4, 6, 3, 8, 13, 34, 2, 21, 10 ];
let n = arr.length;
// Function call
document.write(Xor_Sum(arr, n));
</script>
Time complexity: O(N) where N is the size of the given array
Auxiliary space: O(N)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem