Fast Doubling method to find the Nth Fibonacci number
Last Updated :
12 Jul, 2025
Given an integer N, the task is to find the N-th Fibonacci numbers.
Examples:
Input: N = 3
Output: 2
Explanation:
F(1) = 1, F(2) = 1
F(3) = F(1) + F(2) = 2
Input: N = 6
Output: 8
Approach:
- The Matrix Exponentiation Method is already discussed before. The Doubling Method can be seen as an improvement to the matrix exponentiation method to find the N-th Fibonacci number although it doesn't use matrix multiplication itself.
- The Fibonacci recursive sequence is given by
F(n+1) = F(n) + F(n-1)
- The Matrix Exponentiation method uses the following formula
\[ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} \]
- The method involves costly matrix multiplication and moreover Fn is redundantly computed twice.
On the other hand, Fast Doubling Method is based on two basic formulas:
F(2n) = F(n)[2F(n+1) – F(n)]
F(2n + 1) = F(n)2+F(n+1)2
- Here is a short explanation of the above results:
Start with:
F(n+1) = F(n) + F(n-1) &
F(n) = F(n)
It can be rewritten in the matrix form as:
\[ \begin{bmatrix} F(n+1) \\ F(n) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F(n) \\ F(n-1) \end{bmatrix} \] \[\quad\enspace= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^2 \begin{bmatrix} F(n-1) \\ F(n-2) \end{bmatrix} \] \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\enspace\enspace\thinspace......\\ \[= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} F(1) \\ F(0) \end{bmatrix} \]
For doubling, we just plug in "2n" into the formula:
\[ \begin{bmatrix} F(2n+1) \\ F(2n) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{2n} \begin{bmatrix} F(1) \\ F(0) \end{bmatrix} \] \[\quad\enspace= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} F(1) \\ F(0) \end{bmatrix} \] \[\quad\enspace= \begin{bmatrix} F(n+1) & F(n) \\ F(n) & F(n-1) \end{bmatrix} \begin{bmatrix} F(n+1) & F(n) \\ F(n) & F(n-1) \end{bmatrix} \begin{bmatrix} F(1) \\ F(0) \end{bmatrix} \] \[\quad\enspace= \begin{bmatrix} F(n+1)^2 + F(n)^2 \\ F(n)F(n+1) + F(n)F(n-1) \end{bmatrix} \]
Substituting F(n-1) = F(n+1)- F(n) and after simplification we get,
\[ \begin{bmatrix} F(2n+1) \\ F(2n) \end{bmatrix} = \begin{bmatrix} F(n+1)^2 + F(n)^2 \\ 2F(n+1)F(n) - F(n)^2 \end{bmatrix} \]
Below is the implementation of the above approach:
C++
// C++ program to find the Nth Fibonacci
// number using Fast Doubling Method
#include <bits/stdc++.h>
using namespace std;
int a, b, c, d;
#define MOD 1000000007
// Function calculate the N-th fibonacci
// number using fast doubling method
void FastDoubling(int n, int res[])
{
// Base Condition
if (n == 0) {
res[0] = 0;
res[1] = 1;
return;
}
FastDoubling((n / 2), res);
// Here a = F(n)
a = res[0];
// Here b = F(n+1)
b = res[1];
c = 2 * b - a;
if (c < 0)
c += MOD;
// As F(2n) = F(n)[2F(n+1) – F(n)]
// Here c = F(2n)
c = (a * c) % MOD;
// As F(2n + 1) = F(n)^2 + F(n+1)^2
// Here d = F(2n + 1)
d = (a * a + b * b) % MOD;
// Check if N is odd
// or even
if (n % 2 == 0) {
res[0] = c;
res[1] = d;
}
else {
res[0] = d;
res[1] = c + d;
}
}
// Driver code
int main()
{
int N = 6;
int res[2] = { 0 };
FastDoubling(N, res);
cout << res[0] << "\n";
return 0;
}
Java
// Java program to find the Nth Fibonacci
// number using Fast Doubling Method
class GFG{
// Function calculate the N-th fibonacci
// number using fast doubling method
static void FastDoubling(int n, int []res)
{
int a, b, c, d;
int MOD = 1000000007;
// Base Condition
if (n == 0)
{
res[0] = 0;
res[1] = 1;
return;
}
FastDoubling((n / 2), res);
// Here a = F(n)
a = res[0];
// Here b = F(n+1)
b = res[1];
c = 2 * b - a;
if (c < 0)
c += MOD;
// As F(2n) = F(n)[2F(n+1) – F(n)]
// Here c = F(2n)
c = (a * c) % MOD;
// As F(2n + 1) = F(n)^2 + F(n+1)^2
// Here d = F(2n + 1)
d = (a * a + b * b) % MOD;
// Check if N is odd
// or even
if (n % 2 == 0)
{
res[0] = c;
res[1] = d;
}
else
{
res[0] = d;
res[1] = c + d;
}
}
// Driver code
public static void main(String []args)
{
int N = 6;
int res[] = new int[2];
FastDoubling(N, res);
System.out.print(res[0]);
}
}
// This code is contributed by rock_cool
Python3
# Python3 program to find the Nth Fibonacci
# number using Fast Doubling Method
MOD = 1000000007
# Function calculate the N-th fibonacci
# number using fast doubling method
def FastDoubling(n, res):
# Base Condition
if (n == 0):
res[0] = 0
res[1] = 1
return
FastDoubling((n // 2), res)
# Here a = F(n)
a = res[0]
# Here b = F(n+1)
b = res[1]
c = 2 * b - a
if (c < 0):
c += MOD
# As F(2n) = F(n)[2F(n+1) – F(n)]
# Here c = F(2n)
c = (a * c) % MOD
# As F(2n + 1) = F(n)^2 + F(n+1)^2
# Here d = F(2n + 1)
d = (a * a + b * b) % MOD
# Check if N is odd
# or even
if (n % 2 == 0):
res[0] = c
res[1] = d
else :
res[0] = d
res[1] = c + d
# Driver code
N = 6
res = [0] * 2
FastDoubling(N, res)
print(res[0])
# This code is contributed by divyamohan123
C#
// C# program to find the Nth Fibonacci
// number using Fast Doubling Method
using System;
class GFG{
// Function calculate the N-th fibonacci
// number using fast doubling method
static void FastDoubling(int n, int []res)
{
int a, b, c, d;
int MOD = 1000000007;
// Base Condition
if (n == 0)
{
res[0] = 0;
res[1] = 1;
return;
}
FastDoubling((n / 2), res);
// Here a = F(n)
a = res[0];
// Here b = F(n+1)
b = res[1];
c = 2 * b - a;
if (c < 0)
c += MOD;
// As F(2n) = F(n)[2F(n+1) – F(n)]
// Here c = F(2n)
c = (a * c) % MOD;
// As F(2n + 1) = F(n)^2 + F(n+1)^2
// Here d = F(2n + 1)
d = (a * a + b * b) % MOD;
// Check if N is odd
// or even
if (n % 2 == 0)
{
res[0] = c;
res[1] = d;
}
else
{
res[0] = d;
res[1] = c + d;
}
}
// Driver code
public static void Main()
{
int N = 6;
int []res = new int[2];
FastDoubling(N, res);
Console.Write(res[0]);
}
}
// This code is contributed by Code_Mech
JavaScript
<script>
// Javascript program to find the Nth Fibonacci
// number using Fast Doubling Method
let a, b, c, d;
let MOD = 1000000007;
// Function calculate the N-th fibonacci
// number using fast doubling method
function FastDoubling(n, res)
{
// Base Condition
if (n == 0) {
res[0] = 0;
res[1] = 1;
return;
}
FastDoubling(parseInt(n / 2, 10), res);
// Here a = F(n)
a = res[0];
// Here b = F(n+1)
b = res[1];
c = 2 * b - a;
if (c < 0)
c += MOD;
// As F(2n) = F(n)[2F(n+1) – F(n)]
// Here c = F(2n)
c = (a * c) % MOD;
// As F(2n + 1) = F(n)^2 + F(n+1)^2
// Here d = F(2n + 1)
d = (a * a + b * b) % MOD;
// Check if N is odd
// or even
if (n % 2 == 0) {
res[0] = c;
res[1] = d;
}
else {
res[0] = d;
res[1] = c + d;
}
}
let N = 6;
let res = new Array(2);
res.fill(0);
FastDoubling(N, res);
document.write(res[0]);
</script>
Time Complexity: Repeated squaring reduces time from linear to logarithmic . Hence, with constant time arithmetic, the time complexity is O(log n).
Auxiliary Space: O(n).
Iterative Version
We can implement iterative version of above method, by initializing array with two elements f = [F(0), F(1)] = [0, 1] and iteratively constructing F(n), on every step we will transform f into [F(2i), F(2i+1)] or [F(2i+1), F(2i+2)] , where i corresponds to the current value of i stored in f = [F(i), F(i+1)].
Approach:
- Create array with two elements f = [0, 1] , which represents [F(0), F(1)] .
- For finding F(n), iterate over binary representation of n from left to right, let kth bit from left be bk .
- Iteratively apply the below steps for all bits in n .
- Using bk we will decide whether to transform f = [F(i), F(i+1)] into [F(2i), F(2i+1)] or [F(2i+1), F(2i+2)] .
if bk == 0:
f = [F(2i), F(2i+1)] = [F(i){2F(i+1)-F(i)}, F(i+1)2+F(i)2]
if bk == 1:
f = [F(2i+1), F(2i+2)] = [F(i+1)2+F(i)2, F(i+1){2F(i)+F(i+1)}]where,
F(i) and F(i+1) are current values stored in f.
Example:
for n = 13 = (1101)2
b = 1 1 0 1
[F(0), F(1)] -> [F(1), F(2)] -> [F(3), F(4)] -> [F(6), F(7)] -> [F(13), F(14)]
[0, 1] -> [1, 1] -> [2, 3] -> [8, 13] -> [233, 377]
Below is the implementation of the above approach:
C++
// C++ program to find the Nth Fibonacci
// number using Fast Doubling Method iteratively
#include <bitset>
#include <iostream>
#include <string>
using namespace std;
// helper function to get binary string
string decimal_to_bin(int n)
{
// use bitset to get binary string
string bin = bitset<sizeof(int) * 8>(n).to_string();
auto loc = bin.find('1');
// remove leading zeros
if (loc != string::npos)
return bin.substr(loc);
return "0";
}
// computes fib(n) iteratively using fast doubling method
long long fastfib(int n)
{
string bin_of_n
= decimal_to_bin(n); // binary string of n
long long f[] = { 0, 1 }; // [F(i), F(i+1)] => i=0
for (auto b : bin_of_n) {
long long f2i1
= f[1] * f[1] + f[0] * f[0]; // F(2i+1)
long long f2i = f[0] * (2 * f[1] - f[0]); // F(2i)
if (b == '0') {
f[0] = f2i; // F(2i)
f[1] = f2i1; // F(2i+1)
}
else {
f[0] = f2i1; // F(2i+1)
f[1] = f2i1 + f2i; // F(2i+2)
}
}
return f[0];
}
int main()
{
int n = 13;
long long fib = fastfib(n);
cout << "F(" << n << ") = " << fib << "\n";
}
Java
// Java program to find the Nth Fibonacci
// number using Fast Doubling Method iteratively
import java.io.*;
class GFG {
// Helper function to convert decimal to binary.
static String convertToBinary(int x)
{
int bin = 0;
int rem, i = 1, step = 1;
while (x != 0) {
rem = x % 2;
x = x / 2;
bin = bin + rem * i;
i = i * 10;
}
return Integer.toString(bin);
}
// helper function to get binary string
static String decimal_to_bin(int n)
{
// use bitset to get binary string
String bin = convertToBinary(n);
int loc = bin.indexOf("1");
// remove leading zeros
if (loc != -1) {
return bin.substring(loc);
}
return "0";
}
// computes fib(n) iteratively using fast doubling
// method
static int fastfib(int n)
{
String bin_of_n
= decimal_to_bin(n); // binary string of n
int[] f = { 0, 1 }; // [F(i), F(i+1)] => i=0
for (int i = 0; i < bin_of_n.length(); i++) {
int b = bin_of_n.charAt(i);
int f2i1 = f[1] * f[1] + f[0] * f[0]; // F(2i+1)
int f2i = f[0] * (2 * f[1] - f[0]); // F(2i)
if (b == '0') {
f[0] = f2i; // F(2i)
f[1] = f2i1; // F(2i+1)
}
else {
f[0] = f2i1; // F(2i+1)
f[1] = f2i1 + f2i; // F(2i+2)
}
}
return f[0];
}
public static void main(String[] args)
{
int n = 13;
int fib = fastfib(n);
System.out.print("F(" + n + ") = " + fib);
}
}
// This code is contributed by lokeshmvs21.
Python3
# Python3 program to find the Nth Fibonacci
# number using Fast Doubling Method iteratively
def fastfib(n):
"""computes fib(n) iteratively using fast doubling method"""
bin_of_n = bin(n)[2:] # binary string of n
f = [0, 1] # [F(i), F(i+1)] => i=0
for b in bin_of_n:
f2i1 = f[1]**2 + f[0]**2 # F(2i+1)
f2i = f[0]*(2*f[1]-f[0]) # F(2i)
if b == '0':
f[0], f[1] = f2i, f2i1 # [F(2i), F(2i+1)]
else:
f[0], f[1] = f2i1, f2i1+f2i # [F(2i+1), F(2i+2)]
return f[0]
n = 13
fib = fastfib(n)
print(f'F({n}) =', fib)
C#
using System;
using System.Collections.Generic;
// C# program to find the Nth Fibonacci
// number using Fast Doubling Method iteratively
public class GFG {
// Helper function to convert decimal to binary.
public static string convertToBinary(int x)
{
int bin = 0;
int rem, i = 1, step = 1;
while (x != 0) {
rem = x % 2;
x = x / 2;
bin = bin + rem * i;
i = i * 10;
}
return bin.ToString();
}
// helper function to get binary string
public static string decimal_to_bin(int n)
{
// use bitset to get binary string
string bin = convertToBinary(n);
int loc = bin.IndexOf('1');
// remove leading zeros
if (loc != -1) {
return bin.Substring(loc);
}
return "0";
}
// computes fib(n) iteratively using fast doubling
// method
public static int fastfib(int n)
{
string bin_of_n
= decimal_to_bin(n); // binary string of n
int[] f = { 0, 1 }; // [F(i), F(i+1)] => i=0
for (int i = 0; i < bin_of_n.Length; i++) {
int b = bin_of_n[i];
int f2i1 = f[1] * f[1] + f[0] * f[0]; // F(2i+1)
int f2i = f[0] * (2 * f[1] - f[0]); // F(2i)
if (b == '0') {
f[0] = f2i; // F(2i)
f[1] = f2i1; // F(2i+1)
}
else {
f[0] = f2i1; // F(2i+1)
f[1] = f2i1 + f2i; // F(2i+2)
}
}
return f[0];
}
static public void Main()
{
int n = 13;
int fib = fastfib(n);
Console.WriteLine("F(" + n + ") = " + fib);
}
}
// This code is contributed by akashish__
JavaScript
// JavaScript program to find the Nth Fibonacci
// number using Fast Doubling Method iteratively
// Helper function to convert decimal to binary.
function convertToBinary(x) {
let bin = 0;
let rem, i = 1, step = 1;
while (x != 0) {
rem = x % 2;
x = parseInt(x / 2);
bin = bin + rem * i;
i = i * 10;
}
// let myArr = Array.from(String(bin).split(""));
return bin.toString();
}
// helper function to get binary string
function decimal_to_bin(n)
{
// use bitset to get binary string
let bin = convertToBinary(n);
let loc = bin.indexOf('1');
// remove leading zeros
if (loc != -1)
return bin.substring(loc);
return "0";
}
// computes fib(n) iteratively using fast doubling method
function fastfib(n)
{
let bin_of_n = decimal_to_bin(n); // binary string of n
let f = [0, 1]; // [F(i), F(i+1)] => i=0
for(let i = 0; i < bin_of_n.length; i++){
let b = bin_of_n[i];
let f2i1 = f[1] * f[1] + f[0] * f[0]; // F(2i+1)
let f2i = f[0] * (2 * f[1] - f[0]); // F(2i)
if (b == '0') {
f[0] = f2i; // F(2i)
f[1] = f2i1; // F(2i+1)
}
else {
f[0] = f2i1; // F(2i+1)
f[1] = f2i1 + f2i; // F(2i+2)
}
}
return f[0];
}
let n = 13;
let fib = fastfib(n);
console.log("F(",n,") =", fib);
// The code is contributed by Gautam goel (gautamgoel962)
Time Complexity: We are iterating over a binary string of length n and doing constant time arithmetic operations for each digit, so the time complexity is O(n).
Auxiliary Space: We are storing two elements in f (which is a constant cost), and the binary representation of the number (which has a cost of O(n)) so space complexity is O(n). We could reduce this down to O(1) if we didn't convert the number to a string, but instead used the bits of the number to iterate through .
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem