Transform a BST to greater sum tree
Last Updated :
05 Oct, 2024
Given a BST, transform it into a greater sum tree where each node contains the sum of all nodes greater than that node.
Example:
Input:
Output:
Explanation: The above tree represents the greater sum tree where each node contains the sum of all nodes greater than that node in original tree.
- The root node 11 becomes 119 (sum of 15 + 29 + 35 + 40).
- The left child of 11 becomes 137 (sum of 7 + 11 + 15 + 29 + 35 + 40).
- The right child of 11 becomes 75 (sum of 35 + 40) and so on.
[Naive Approach] By Calculating Sum for Each Node - O(n^2) Time and O(n) Space
This method doesn’t require the tree to be a BST. Following are the steps:
- Traverse node by node (in-order, pre-order, etc.).
- For each node, find all the nodes greater than the current node and sum their values. Store all these sums.
- Replace each node's value with its corresponding sum by traversing in the same order as in Step 1.
Below is the implementation of the above approach:
C++
// C++ program to transform a BST to sum tree
#include <bits/stdc++.h>
using namespace std;
class Node {
public:
int data;
Node* left;
Node* right;
Node(int value) {
data = value;
left = nullptr;
right = nullptr;
}
};
// Function to find nodes having greater value than current node.
void findGreaterNodes(Node* root, Node* curr, unordered_map<Node*,int> &map) {
if (root == nullptr) return;
// if value is greater than node, then increment
// it in the map
if (root->data > curr->data)
map[curr] += root->data;
findGreaterNodes(root->left, curr, map);
findGreaterNodes(root->right, curr, map);
}
void transformToGreaterSumTree(Node* curr, Node* root,
unordered_map<Node*,int>&map) {
if (curr == nullptr) {
return;
}
// Find all nodes greater than current node
findGreaterNodes(root, curr, map);
// Recursively check for left and right subtree.
transformToGreaterSumTree(curr->left, root, map);
transformToGreaterSumTree(curr->right, root, map);
}
// Function to update value of each node.
void preOrderTrav(Node* root, unordered_map<Node*, int> &map) {
if (root == nullptr) return;
root->data = map[root];
preOrderTrav(root->left, map);
preOrderTrav(root->right, map);
}
void transformTree(Node* root) {
// map to store greater sum for each node.
unordered_map<Node*, int> map;
transformToGreaterSumTree(root, root, map);
// update the value of nodes
preOrderTrav(root, map);
}
void inorder(Node* root) {
if (root == nullptr) {
return;
}
inorder(root->left);
cout << root->data << " ";
inorder(root->right);
}
int main() {
// Constructing the BST
// 11
// / \
// 2 29
// / \ / \
// 1 7 15 40
// \
// 50
Node* root = new Node(11);
root->left = new Node(2);
root->right = new Node(29);
root->left->left = new Node(1);
root->left->right = new Node(7);
root->right->left = new Node(15);
root->right->right = new Node(40);
root->right->right->right = new Node(50);
transformTree(root);
inorder(root);
return 0;
}
Java
// Java program to transform a BST to sum tree
import java.util.HashMap;
class Node {
int data;
Node left, right;
Node(int value) {
data = value;
left = null;
right = null;
}
}
class GfG {
// Function to find nodes having greater value than
// current node.
static void findGreaterNodes(Node root, Node curr,
HashMap<Node, Integer> map) {
if (root == null) return;
// if value is greater than node, then increment
// it in the map
if (root.data > curr.data)
map.put(curr, map.getOrDefault(curr, 0) + root.data);
findGreaterNodes(root.left, curr, map);
findGreaterNodes(root.right, curr, map);
}
static void transformToGreaterSumTree(Node curr, Node root,
HashMap<Node, Integer> map) {
if (curr == null) {
return;
}
// Find all nodes greater than current node
findGreaterNodes(root, curr, map);
// Recursively check for left and right subtree.
transformToGreaterSumTree(curr.left, root, map);
transformToGreaterSumTree(curr.right, root, map);
}
// Function to update value of each node.
static void preOrderTrav(Node root, HashMap<Node, Integer> map) {
if (root == null) return;
root.data = map.getOrDefault(root, 0);
preOrderTrav(root.left, map);
preOrderTrav(root.right, map);
}
static void transformTree(Node root) {
// map to store greater sum for each node.
HashMap<Node, Integer> map = new HashMap<>();
transformToGreaterSumTree(root, root, map);
// update the value of nodes
preOrderTrav(root, map);
}
static void inorder(Node root) {
if (root == null) {
return;
}
inorder(root.left);
System.out.print(root.data + " ");
inorder(root.right);
}
public static void main(String[] args) {
// Constructing the BST
// 11
// / \
// 2 29
// / \ / \
// 1 7 15 40
// \
// 50
Node root = new Node(11);
root.left = new Node(2);
root.right = new Node(29);
root.left.left = new Node(1);
root.left.right = new Node(7);
root.right.left = new Node(15);
root.right.right = new Node(40);
root.right.right.right = new Node(50);
transformTree(root);
inorder(root);
}
}
Python
# Python program to transform a BST
# to sum tree
class Node:
def __init__(self, value):
self.data = value
self.left = None
self.right = None
# Function to find nodes having greater
# value than current node.
def findGreaterNodes(root, curr, map):
if root is None:
return
# if value is greater than node, then increment
# it in the map
if root.data > curr.data:
map[curr] += root.data
findGreaterNodes(root.left, curr, map)
findGreaterNodes(root.right, curr, map)
def transformToGreaterSumTree(curr, root, map):
if curr is None:
return
# Find all nodes greater than current node
map[curr] = 0
findGreaterNodes(root, curr, map)
# Recursively check for left and right subtree.
transformToGreaterSumTree(curr.left, root, map)
transformToGreaterSumTree(curr.right, root, map)
# Function to update value of each node.
def preOrderTrav(root, map):
if root is None:
return
root.data = map.get(root, root.data)
preOrderTrav(root.left, map)
preOrderTrav(root.right, map)
def transformTree(root):
# map to store greater sum for each node.
map = {}
transformToGreaterSumTree(root, root, map)
# update the value of nodes
preOrderTrav(root, map)
def inorder(root):
if root is None:
return
inorder(root.left)
print(root.data, end=" ")
inorder(root.right)
if __name__ == "__main__":
# Constructing the BST
# 11
# / \
# 2 29
# / \ / \
# 1 7 15 40
# \
# 50
root = Node(11)
root.left = Node(2)
root.right = Node(29)
root.left.left = Node(1)
root.left.right = Node(7)
root.right.left = Node(15)
root.right.right = Node(40)
root.right.right.right = Node(50)
transformTree(root)
inorder(root)
C#
// C# program to transform a BST
// to sum tree
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int value) {
data = value;
left = null;
right = null;
}
}
class GfG {
// Function to find nodes having greater value
// than current node.
static void FindGreaterNodes(Node root, Node curr,
Dictionary<Node, int> map) {
if (root == null) return;
// if value is greater than node, then increment
// it in the map
if (root.data > curr.data)
map[curr] += root.data;
FindGreaterNodes(root.left, curr, map);
FindGreaterNodes(root.right, curr, map);
}
static void TransformToGreaterSumTree(Node curr, Node root,
Dictionary<Node, int> map) {
if (curr == null) {
return;
}
// Find all nodes greater than
// current node
map[curr] = 0;
FindGreaterNodes(root, curr, map);
// Recursively check for left and right subtree.
TransformToGreaterSumTree(curr.left, root, map);
TransformToGreaterSumTree(curr.right, root, map);
}
// Function to update value of each node.
static void PreOrderTrav(Node root, Dictionary<Node, int> map) {
if (root == null) return;
root.data = map.ContainsKey(root) ? map[root] : root.data;
PreOrderTrav(root.left, map);
PreOrderTrav(root.right, map);
}
static void TransformTree(Node root) {
// map to store greater sum for each node.
Dictionary<Node, int> map = new Dictionary<Node, int>();
TransformToGreaterSumTree(root, root, map);
// update the value of nodes
PreOrderTrav(root, map);
}
static void Inorder(Node root) {
if (root == null) {
return;
}
Inorder(root.left);
Console.Write(root.data + " ");
Inorder(root.right);
}
static void Main(string[] args) {
// Constructing the BST
// 11
// / \
// 2 29
// / \ / \
// 1 7 15 40
// \
// 50
Node root = new Node(11);
root.left = new Node(2);
root.right = new Node(29);
root.left.left = new Node(1);
root.left.right = new Node(7);
root.right.left = new Node(15);
root.right.right = new Node(40);
root.right.right.right = new Node(50);
TransformTree(root);
Inorder(root);
}
}
JavaScript
// JavaScript program to transform
// a BST to sum tree
class Node {
constructor(value) {
this.data = value;
this.left = null;
this.right = null;
}
}
// Function to find nodes having greater value
// than current node.
function findGreaterNodes(root, curr, map) {
if (root === null) return;
// if value is greater than node, then increment
// it in the map
if (root.data > curr.data) {
map.set(curr, (map.get(curr) || 0) + root.data);
}
findGreaterNodes(root.left, curr, map);
findGreaterNodes(root.right, curr, map);
}
function transformToGreaterSumTree(curr, root, map) {
if (curr === null) {
return;
}
// Find all nodes greater than current node
findGreaterNodes(root, curr, map);
// Recursively check for left and right subtree.
transformToGreaterSumTree(curr.left, root, map);
transformToGreaterSumTree(curr.right, root, map);
}
// Function to update value of each node.
function preOrderTrav(root, map) {
if (root === null) return;
root.data = map.has(root) ? map.get(root) : 0;
preOrderTrav(root.left, map);
preOrderTrav(root.right, map);
}
function transformTree(root) {
// map to store greater sum for each node.
const map = new Map();
transformToGreaterSumTree(root, root, map);
// update the value of nodes
preOrderTrav(root, map);
}
function inorder(root) {
if (root === null) {
return;
}
inorder(root.left);
console.log(root.data + " ");
inorder(root.right);
}
// Constructing the BST
const root = new Node(11);
root.left = new Node(2);
root.right = new Node(29);
root.left.left = new Node(1);
root.left.right = new Node(7);
root.right.left = new Node(15);
root.right.right = new Node(40);
root.right.right.right = new Node(50);
transformTree(root);
inorder(root);
Output154 152 145 134 119 90 50 0
Time Complexity: O(n^2), where n is the number of nodes in tree.
Auxiliary Space: O(n)
Note: This approach will give time limit exceeded (TLE) error.
[Expected Approach] Using Single Traversal - O(n) Time and O(n) Space
The idea is to traverse the tree in reverse in-order (right -> root -> left) while keeping a running sum of all previously visited nodes. The value of each node is updated to this running sum, which ensure that each node contains the sum of all nodes greater than it.
Below is the implementation of the above approach:
C++
// C++ program to transform a BST to sum tree
#include <bits/stdc++.h>
using namespace std;
class Node {
public:
int data;
Node* left;
Node* right;
Node(int value) {
data = value;
left = nullptr;
right = nullptr;
}
};
void transformToGreaterSumTree(Node* root, int& sum) {
if (root == nullptr) {
return;
}
// Traverse the right subtree first (larger values)
transformToGreaterSumTree(root->right, sum);
// Update the sum and the current node's value
sum += root->data;
root->data = sum - root->data;
// Traverse the left subtree (smaller values)
transformToGreaterSumTree(root->left, sum);
}
void transformTree(Node* root) {
// Initialize the cumulative sum
int sum = 0;
transformToGreaterSumTree(root, sum);
}
void inorder(Node* root) {
if (root == nullptr) {
return;
}
inorder(root->left);
cout << root->data << " ";
inorder(root->right);
}
int main() {
// Constructing the BST
// 11
// / \
// 2 29
// / \ / \
// 1 7 15 40
// \
// 50
Node* root = new Node(11);
root->left = new Node(2);
root->right = new Node(29);
root->left->left = new Node(1);
root->left->right = new Node(7);
root->right->left = new Node(15);
root->right->right = new Node(40);
root->right->right->right = new Node(50);
transformTree(root);
inorder(root);
return 0;
}
C
// C program to transform a BST
// to sum tree
#include <stdio.h>
#include <stdlib.h>
struct Node {
int data;
struct Node* left;
struct Node* right;
};
void transformToGreaterSumTree(struct Node* root, int* sum) {
if (root == NULL) {
return;
}
// Traverse the right subtree first (larger values)
transformToGreaterSumTree(root->right, sum);
// Update the sum and the current node's value
*sum += root->data;
root->data = *sum - root->data;
// Traverse the left subtree (smaller values)
transformToGreaterSumTree(root->left, sum);
}
void transformTree(struct Node* root) {
// Initialize the cumulative sum
int sum = 0;
transformToGreaterSumTree(root, &sum);
}
void inorder(struct Node* root) {
if (root == NULL) {
return;
}
inorder(root->left);
printf("%d ", root->data);
inorder(root->right);
}
struct Node* createNode(int data) {
struct Node* node =
(struct Node*)malloc(sizeof(struct Node));
node->data = data;
node->left = NULL;
node->right = NULL;
return node;
}
int main() {
// Constructing the BST
// 11
// / \
// 2 29
// / \ / \
// 1 7 15 40
// \
// 50
struct Node* root = createNode(11);
root->left = createNode(2);
root->right = createNode(29);
root->left->left = createNode(1);
root->left->right = createNode(7);
root->right->left = createNode(15);
root->right->right = createNode(40);
root->right->right->right = createNode(50);
transformTree(root);
inorder(root);
return 0;
}
Java
// Java program to transform a
// BST to sum tree
class Node {
int data;
Node left, right;
Node(int value) {
data = value;
left = right = null;
}
}
class GfG {
static void transformToGreaterSumTree(Node root, int[] sum) {
if (root == null) {
return;
}
// Traverse the right subtree first (larger values)
transformToGreaterSumTree(root.right, sum);
// Update the sum and the current node's value
sum[0] += root.data;
root.data = sum[0] - root.data;
// Traverse the left subtree (smaller values)
transformToGreaterSumTree(root.left, sum);
}
static void transformTree(Node root) {
// Initialize the cumulative sum
int[] sum = {0};
transformToGreaterSumTree(root, sum);
}
static void inorder(Node root) {
if (root == null) {
return;
}
inorder(root.left);
System.out.print(root.data + " ");
inorder(root.right);
}
public static void main(String[] args) {
// Constructing the BST
// 11
// / \
// 2 29
// / \ / \
// 1 7 15 40
// \
// 50
Node root = new Node(11);
root.left = new Node(2);
root.right = new Node(29);
root.left.left = new Node(1);
root.left.right = new Node(7);
root.right.left = new Node(15);
root.right.right = new Node(40);
root.right.right.right = new Node(50);
transformTree(root);
inorder(root);
}
}
Python
# Python program to transform a BST to sum tree
class Node:
def __init__(self, value):
self.data = value
self.left = None
self.right = None
def transformToGreaterSumTree(root, sum):
if root is None:
return
# Traverse the right subtree first (larger values)
transformToGreaterSumTree(root.right, sum)
# Update the sum and the current node's value
sum[0] += root.data
root.data = sum[0] - root.data
# Traverse the left subtree (smaller values)
transformToGreaterSumTree(root.left, sum)
def transformTree(root):
# Initialize the cumulative sum
sum = [0]
transformToGreaterSumTree(root, sum)
def inorder(root):
if root is None:
return
inorder(root.left)
print(root.data, end=" ")
inorder(root.right)
if __name__ == "__main__":
# Constructing the BST
# 11
# / \
# 2 29
# / \ / \
# 1 7 15 40
# \
# 50
root = Node(11)
root.left = Node(2)
root.right = Node(29)
root.left.left = Node(1)
root.left.right = Node(7)
root.right.left = Node(15)
root.right.right = Node(40)
root.right.right.right = Node(50)
transformTree(root)
inorder(root)
C#
// C# program to transform a BST to sum tree
using System;
class Node {
public int data;
public Node left, right;
public Node(int value) {
data = value;
left = right = null;
}
}
class GfG {
static void transformToGreaterSumTree(Node root, ref int sum) {
if (root == null) {
return;
}
// Traverse the right subtree first (larger values)
transformToGreaterSumTree(root.right, ref sum);
// Update the sum and the current node's value
sum += root.data;
root.data = sum - root.data;
// Traverse the left subtree (smaller values)
transformToGreaterSumTree(root.left, ref sum);
}
static void transformTree(Node root) {
// Initialize the cumulative sum
int sum = 0;
transformToGreaterSumTree(root, ref sum);
}
static void inorder(Node root) {
if (root == null) {
return;
}
inorder(root.left);
Console.Write(root.data + " ");
inorder(root.right);
}
static void Main() {
// Constructing the BST
// 11
// / \
// 2 29
// / \ / \
// 1 7 15 40
// \
// 50
Node root = new Node(11);
root.left = new Node(2);
root.right = new Node(29);
root.left.left = new Node(1);
root.left.right = new Node(7);
root.right.left = new Node(15);
root.right.right = new Node(40);
root.right.right.right = new Node(50);
transformTree(root);
inorder(root);
}
}
JavaScript
// JavaScript program to transform a
// BST to sum tree
class Node {
constructor(value) {
this.data = value;
this.left = null;
this.right = null;
}
}
function transformToGreaterSumTree(root, sum) {
if (root === null) {
return;
}
// Traverse the right subtree first (larger values)
transformToGreaterSumTree(root.right, sum);
// Update the sum and the current node's value
sum[0] += root.data;
root.data = sum[0] - root.data;
// Traverse the left subtree (smaller values)
transformToGreaterSumTree(root.left, sum);
}
function transformTree(root) {
let sum = [0]; // Initialize the cumulative sum
transformToGreaterSumTree(root, sum);
}
// Function to perform in-order traversal (for testing)
function inorder(root) {
if (root === null) {
return;
}
inorder(root.left);
console.log(root.data + " ");
inorder(root.right);
}
// Constructing the BST
// 11
// / \
// 2 29
// / \ / \
// 1 7 15 40
// \
// 50
let root = new Node(11);
root.left = new Node(2);
root.right = new Node(29);
root.left.left = new Node(1);
root.left.right = new Node(7);
root.right.left = new Node(15);
root.right.right = new Node(40);
root.right.right.right = new Node(50);
transformTree(root);
inorder(root);
Output154 152 145 134 119 90 50 0
Time Complexity: O(n), where n is the number of nodes in given Binary Tree, as it does a simple traversal of the tree.
Auxiliary Space: O(n)
BST to greater Sum Tree | DSA Problem
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem