Split into K subarrays to minimize the maximum sum of all subarrays
Last Updated :
12 Jul, 2025
Given an array arr[] and a number k, split the given array into k subarrays such that the maximum subarray sum achievable out of k subarrays formed is the minimum possible, find that possible subarray sum.
Examples:
Input: arr[] = [1, 2, 3, 4], k = 3
Output: 4
Explanation: Optimal Split is [1, 2], [3], [4]. Maximum sum of all subarrays is 4, which is minimum possible for 3 splits.
Input: arr[] = [1, 1, 2], k = 2
Output: 2
Explanation: Splitting the array as [1, 1] and [2] is optimal. This results is a maximum sum subarray of 2.
[Naive Approach] - By iterating through every possible solution
The idea is to recursively try all ways to split the array into k
contiguous subarrays, tracking the maximum sum in each split. At each step, we pick a new partition point and update the current max sum. Once only one partition remains, the rest of the elements are grouped, and the overall minimum of the maximum subarray sums is recorded.
C++
#include <iostream>
#include <vector>
#include <climits>
#include <algorithm>
using namespace std;
void solve(vector<int> &arr, int k, int index, int maxsum, int &ans) {
// K = 1 is the base Case
int n = arr.size();
int sum = 0;
if (k == 1) {
for (int i = index; i < n; i++) {
sum += arr[i];
}
// we update maxsum
maxsum = max(maxsum, sum);
ans = min(ans, maxsum);
return;
}
// using for loop to divide the array into K-subarray
for (int i = index; i < n; i++) {
sum += arr[i];
// for each subarray we calculate sum ans update
// maxsum
maxsum = max(maxsum, sum);
solve(arr, k - 1, i + 1, maxsum, ans);
}
}
int splitArray(vector<int> &arr, int k) {
int ans = INT_MAX;
solve(arr, k, 0, 0, ans);
return ans;
}
int main() {
vector<int> arr = {1, 2, 3, 4};
int k = 3;
cout << splitArray(arr, k);
}
Java
// Java code to iterate through
// every possible solution
import java.util.*;
class GfG {
static void solve(int[] arr, int k, int index,
int maxsum, int[] ans) {
// K=1 is the base Case
int n = arr.length;
int sum = 0;
if (k == 1) {
for (int i = index; i < n; i++) {
sum += arr[i];
}
// we update maxsum
maxsum = Math.max(maxsum, sum);
ans[0] = Math.min(ans[0], maxsum);
return;
}
// using for loop to divide the array into
// K-subarray
for (int i = index; i < n; i++) {
sum += arr[i];
// for each subarray we calculate sum and update
// maxsum
maxsum = Math.max(maxsum, sum);
solve(arr, k - 1, i + 1, maxsum, ans);
}
}
static int splitArray(int[] arr, int k) {
int[] ans = { Integer.MAX_VALUE };
solve(arr, k, 0, 0, ans);
return ans[0];
}
public static void main(String[] args) {
int[] arr = { 1, 2, 3, 4 };
int k = 3;
System.out.println(splitArray(arr, k));
}
}
Python
# Python code to iterate through
# every possible solution
def solve(arr, k, index, maxsum, ans):
# K=1 is the base Case
n = len(arr)
sum = 0
if k == 1:
for i in range(index, n):
sum += arr[i]
# we update maxsum
maxsum = max(maxsum, sum)
# the answer is stored in ans
ans[0] = min(ans[0], maxsum)
return
# using for loop to divide the array into K-subarray
for i in range(index, n):
sum += arr[i]
# for each subarray we calculate sum and update
# maxsum
maxsum = max(maxsum, sum)
solve(arr, k - 1, i + 1, maxsum, ans)
def splitArray(arr, k):
ans = [float('inf')]
solve(arr, k, 0, 0, ans)
return ans[0]
arr = [1, 2, 3, 4]
k = 3
print(splitArray(arr, k))
C#
// C# code to iterate through
// every possible solution
using System;
class GfG {
static void Solve(int[] arr, int k, int index,
int maxsum, ref int ans) {
// K=1 is the base Case
int n = arr.Length;
int sum = 0;
if (k == 1) {
for (int i = index; i < n; i++) {
sum += arr[i];
}
// we update maxsum
maxsum = Math.Max(maxsum, sum);
ans = Math.Min(ans, maxsum);
return;
}
// using for loop to divide the array into
// K-subarray
for (int i = index; i < n; i++) {
sum += arr[i];
// for each subarray we calculate sum and update
// maxsum
maxsum = Math.Max(maxsum, sum);
Solve(arr, k - 1, i + 1, maxsum, ref ans);
}
}
static int SplitArray(int[] arr, int k) {
int ans = int.MaxValue;
Solve(arr, k, 0, 0, ref ans);
return ans;
}
static void Main(string[] args) {
int[] arr = { 1, 2, 3, 4 };
int k = 3;
Console.WriteLine(SplitArray(arr, k));
}
}
JavaScript
function solve(arr, k, index, maxsum, ans) {
// K=1 is the base Case
const n = arr.length;
let sum = 0;
if (k === 1) {
for (let i = index; i < n; i++) {
sum += arr[i];
}
// we update maxsum
maxsum = Math.max(maxsum, sum);
ans[0] = Math.min(ans[0], maxsum);
return;
}
// using for loop to divide the array into K-subarray
for (let i = index; i < n; i++) {
sum += arr[i];
// for each subarray we calculate sum and update
// maxsum
maxsum = Math.max(maxsum, sum);
solve(arr, k - 1, i + 1, maxsum, ans);
}
}
function splitArray(arr, k) {
let ans = [ Infinity ];
solve(arr, k, 0, 0, ans);
return ans[0];
}
// Driver Code
const arr = [ 1, 2, 3, 4 ];
const k = 3;
console.log(splitArray(arr, k));
Time Complexity: O((n-1)C(k-1)), to explores all ways to split n
elements into k
contiguous parts by choosing k-1
split points from n-1
possible positions.
Auxiliary Space: O(k),
due to the maximum recursion depth being k
, with each call using constant space.
[Expected Approach] Using Binary Search
The approach uses Binary Search to find the minimum possible value for the maximum subarray sum when the array is split into k subarrays. The binary search range is between the maximum element of the array (since no subarray can have a sum less than the largest element) and the total sum of the array (which is the maximum sum when the entire array is considered as a single subarray). For each midpoint value, we check if it's possible to split the array into k or fewer subarrays such that no subarray's sum exceeds the midpoint. If it is possible, we attempt to minimize the maximum sum by narrowing the search range to smaller values.
C++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
bool check(int mid, vector<int> &arr, int k) {
int n = arr.size();
int count = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
// If individual element is greater
// maximum possible sum
if (arr[i] > mid)
return false;
// Increase sum of current sub - arr
sum += arr[i];
// If the sum is greater than
// mid increase count
if (sum > mid) {
count++;
sum = arr[i];
}
}
count++;
if (count <= k)
return true;
return false;
}
int splitArray(vector<int> &arr, int k) {
int n = arr.size();
int max = *max_element(arr.begin(), arr.end());
// Max subarr sum, considering subarr of length 1
int start = max;
// Max subarr sum, considering subarr of length n
int end = 0;
for (int i = 0; i < n; i++) {
end += arr[i];
}
// ans stores possible
// maximum sub arr sum
int ans = 0;
while (start <= end) {
int mid = (start + end) / 2;
// If mid is possible solution
// Put ans = mid;
if (check(mid, arr, k)) {
ans = mid;
end = mid - 1;
}
else {
start = mid + 1;
}
}
return ans;
}
int main() {
vector<int> arr = {1, 2, 3, 4};
int k = 3;
cout << splitArray(arr, k);
}
Java
import java.util.*;
class GfG {
static boolean check(int mid, int[] arr, int k) {
int n = arr.length;
int count = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
// If individual element is greater
// maximum possible sum
if (arr[i] > mid)
return false;
// Increase sum of current sub - arr
sum += arr[i];
// If the sum is greater than
// mid increase count
if (sum > mid) {
count++;
sum = arr[i];
}
}
count++;
return count <= k;
}
static int splitArray(int[] arr, int k) {
int n = arr.length;
int max = Arrays.stream(arr).max().getAsInt();
// Max subarr sum, considering subarr of length 1
int start = max;
// Max subarr sum, considering subarr of length n
int end = 0;
for (int value : arr) {
end += value;
}
// ans stores possible
// maximum sub arr sum
int ans = 0;
while (start <= end) {
int mid = (start + end) / 2;
// If mid is possible solution
// Put ans = mid;
if (check(mid, arr, k)) {
ans = mid;
end = mid - 1;
}
else {
start = mid + 1;
}
}
return ans;
}
public static void main(String[] args) {
int[] arr = { 1, 2, 3, 4 };
int k = 3;
System.out.println(splitArray(arr, k));
}
}
Python
def check(mid, arr, k):
n = len(arr)
count = 0
total = 0
for num in arr:
# If individual element is greater
# maximum possible sum
if num > mid:
return False
# Increase sum of current sub-array
total += num
# If the sum is greater than mid, increase count
if total > mid:
count += 1
total = num
count += 1
return count <= k
def splitArray(arr, k):
n = len(arr)
start = max(arr)
end = sum(arr)
# ans stores possible maximum subarray sum
ans = 0
while start <= end:
mid = (start + end) // 2
# If mid is possible solution, set ans = mid
if check(mid, arr, k):
ans = mid
end = mid - 1
else:
start = mid + 1
return ans
arr = [1, 2, 3, 4]
k = 3
print(splitArray(arr, k))
C#
using System;
using System.Linq;
class GfG {
static bool Check(int mid, int[] arr, int k) {
int n = arr.Length;
int count = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
// If individual element is greater
// maximum possible sum
if (arr[i] > mid)
return false;
// Increase sum of current sub-array
sum += arr[i];
// If the sum is greater than mid, increase
// count
if (sum > mid) {
count++;
sum = arr[i];
}
}
count++;
return count <= k;
}
static int SplitArray(int[] arr, int k) {
int n = arr.Length;
int start = arr.Max();
int end = 0;
foreach(int num in arr) { end += num; }
// ans stores possible maximum subarray sum
int ans = 0;
while (start <= end) {
int mid = (start + end) / 2;
// If mid is possible solution, set ans = mid
if (Check(mid, arr, k)) {
ans = mid;
end = mid - 1;
}
else {
start = mid + 1;
}
}
return ans;
}
static void Main() {
int[] arr = { 1, 2, 3, 4 };
int k = 3;
Console.WriteLine(SplitArray(arr, k));
}
}
JavaScript
function check(mid, arr, k) {
const n = arr.length;
let count = 0;
let sum = 0;
for (let i = 0; i < n; i++) {
// If individual element is greater
// maximum possible sum
if (arr[i] > mid) {
return false;
}
// Increase sum of current sub-array
sum += arr[i];
// If the sum is greater than mid, increase count
if (sum > mid) {
count++;
sum = arr[i];
}
}
count++;
return count <= k;
}
function splitArray(arr, k) {
const n = arr.length;
let start
= Math.max(...arr);
let end
= arr.reduce((a, b) => a + b,
0);
// ans stores possible maximum subarray sum
let ans = 0;
while (start <= end) {
const mid = Math.floor((start + end) / 2);
// If mid is possible solution, set ans = mid
if (check(mid, arr, k)) {
ans = mid;
end = mid - 1;
}
else {
start = mid + 1;
}
}
return ans;
}
// Driver Code
const arr = [ 1, 2, 3, 4 ];
const k = 3;
console.log(splitArray(arr, k));
Time Complexity: O(n * log(sum)),
where n
is the array size and sum
is the total sum of the array, due to binary search from max(arr)
to sum(arr)
and linear checking in each iteration.
Auxiliary Space: O(1),
uses constant extra space regardless of input size (excluding input and output storage).
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem