Split an array into two equal Sum subarrays
Last Updated :
11 Jul, 2022
Given an array of integers greater than zero, find if it is possible to split it in two subarrays (without reordering the elements), such that the sum of the two subarrays is the same. Print the two subarrays.
Examples :
Input : Arr[] = { 1 , 2 , 3 , 4 , 5 , 5 }
Output : { 1 2 3 4 }
{ 5 , 5 }
Input : Arr[] = { 4, 1, 2, 3 }
Output : {4 1}
{2 3}
Input : Arr[] = { 4, 3, 2, 1}
Output : Not Possible
Asked In : Facebook interview
A Simple solution is to run two loop to split array and check it is possible to split array into two parts such that sum of first_part equal to sum of second_part.
Below is the implementation of above idea.
C++
// C++ program to split an array into Two
// equal sum subarrays
#include<bits/stdc++.h>
using namespace std;
// Returns split point. If not possible, then
// return -1.
int findSplitPoint(int arr[], int n)
{
int leftSum = 0 ;
// traverse array element
for (int i = 0; i < n; i++)
{
// add current element to left Sum
leftSum += arr[i] ;
// find sum of rest array elements (rightSum)
int rightSum = 0 ;
for (int j = i+1 ; j < n ; j++ )
rightSum += arr[j] ;
// split point index
if (leftSum == rightSum)
return i+1 ;
}
// if it is not possible to split array into
// two parts
return -1;
}
// Prints two parts after finding split point using
// findSplitPoint()
void printTwoParts(int arr[], int n)
{
int splitPoint = findSplitPoint(arr, n);
if (splitPoint == -1 || splitPoint == n )
{
cout << "Not Possible" <<endl;
return;
}
for (int i = 0; i < n; i++)
{
if(splitPoint == i)
cout << endl;
cout << arr[i] << " " ;
}
}
// driver program
int main()
{
int arr[] = {1 , 2 , 3 , 4 , 5 , 5 };
int n = sizeof(arr)/sizeof(arr[0]);
printTwoParts(arr, n);
return 0;
}
Java
// Java program to split an array
// into two equal sum subarrays
import java.io.*;
class GFG {
// Returns split point. If
// not possible, then return -1.
static int findSplitPoint(int arr[], int n)
{
int leftSum = 0 ;
// traverse array element
for (int i = 0; i < n; i++)
{
// add current element to left Sum
leftSum += arr[i] ;
// find sum of rest array
// elements (rightSum)
int rightSum = 0 ;
for (int j = i+1 ; j < n ; j++ )
rightSum += arr[j] ;
// split point index
if (leftSum == rightSum)
return i+1 ;
}
// if it is not possible to
// split array into two parts
return -1;
}
// Prints two parts after finding
// split point using findSplitPoint()
static void printTwoParts(int arr[], int n)
{
int splitPoint = findSplitPoint(arr, n);
if (splitPoint == -1 || splitPoint == n )
{
System.out.println("Not Possible");
return;
}
for (int i = 0; i < n; i++)
{
if(splitPoint == i)
System.out.println();
System.out.print(arr[i] + " ");
}
}
// Driver program
public static void main (String[] args) {
int arr[] = {1 , 2 , 3 , 4 , 5 , 5 };
int n = arr.length;
printTwoParts(arr, n);
}
}
// This code is contributed by vt_m
Python3
# Python3 program to split an array into Two
# equal sum subarrays
# Returns split point. If not possible, then
# return -1.
def findSplitPoint(arr, n) :
leftSum = 0
# traverse array element
for i in range(0, n) :
# add current element to left Sum
leftSum += arr[i]
# find sum of rest array elements (rightSum)
rightSum = 0
for j in range(i+1, n) :
rightSum += arr[j]
# split point index
if (leftSum == rightSum) :
return i+1
# if it is not possible to split array into
# two parts
return -1
# Prints two parts after finding split point using
# findSplitPoint()
def printTwoParts(arr, n) :
splitPo = findSplitPoint(arr, n)
if (splitPo == -1 or splitPo == n ) :
print ("Not Possible")
return
for i in range(0, n) :
if(splitPo == i) :
print ("")
print (str(arr[i]) + ' ',end='')
# driver program
arr = [1 , 2 , 3 , 4 , 5 , 5]
n = len(arr)
printTwoParts(arr, n)
# This code is contributed by Manish Shaw
# (manishshaw1)
C#
// C# program to split an array
// into two equal sum subarrays
using System;
class GFG {
// Returns split point. If
// not possible, then return -1.
static int findSplitPoint(int []arr, int n)
{
int leftSum = 0 ;
// traverse array element
for (int i = 0; i < n; i++)
{
// add current element to left Sum
leftSum += arr[i] ;
// find sum of rest array
// elements (rightSum)
int rightSum = 0 ;
for (int j = i+1 ; j < n ; j++ )
rightSum += arr[j] ;
// split point index
if (leftSum == rightSum)
return i+1 ;
}
// if it is not possible to
// split array into two parts
return -1;
}
// Prints two parts after finding
// split point using findSplitPoint()
static void printTwoParts(int []arr, int n)
{
int splitPoint = findSplitPoint(arr, n);
if (splitPoint == -1 || splitPoint == n )
{
Console.Write("Not Possible");
return;
}
for (int i = 0; i < n; i++)
{
if(splitPoint == i)
Console.WriteLine();
Console.Write(arr[i] + " ");
}
}
// Driver program
public static void Main ()
{
int []arr = {1 , 2 , 3 , 4 , 5 , 5 };
int n = arr.Length;
printTwoParts(arr, n);
}
}
// This code is contributed by nitin mittal
PHP
<?php
// PHP program to split
// an array into Two
// equal sum subarrays
// Returns split point.
// If not possible, then
// return -1.
function findSplitPoint( $arr, $n)
{
$leftSum = 0 ;
// traverse array element
for($i = 0; $i < $n; $i++)
{
// add current element
// to left Sum
$leftSum += $arr[$i] ;
// find sum of rest array
// elements (rightSum)
$rightSum = 0 ;
for($j = $i + 1 ; $j < $n ; $j++ )
$rightSum += $arr[$j] ;
// split point index
if ($leftSum == $rightSum)
return $i+1 ;
}
// if it is not possible
// to split array into
// two parts
return -1;
}
// Prints two parts after
// finding split point using
// findSplitPoint()
function printTwoParts($arr, $n)
{
$splitPoint = findSplitPoint($arr, $n);
if ($splitPoint == -1 or $splitPoint == $n )
{
echo "Not Possible" ;
return;
}
for ( $i = 0; $i < $n; $i++)
{
if($splitPoint == $i)
echo "\n";
echo $arr[$i] , " " ;
}
}
// Driver Code
$arr = array(1 , 2 , 3 , 4 , 5 , 5);
$n = count($arr);
printTwoParts($arr, $n);
// This code is contributed by anuj_67.
?>
JavaScript
<script>
// Java script program to split an array
// into two equal sum subarrays
// Returns split point. If
// not possible, then return -1.
function findSplitPoint(arr,n)
{
let leftSum = 0 ;
// traverse array element
for (let i = 0; i < n; i++)
{
// add current element to left Sum
leftSum += arr[i] ;
// find sum of rest array
// elements (rightSum)
let rightSum = 0 ;
for (let j = i+1 ; j < n ; j++ )
rightSum += arr[j] ;
// split point index
if (leftSum == rightSum)
return i+1 ;
}
// if it is not possible to
// split array into two parts
return -1;
}
// Prints two parts after finding
// split point using findSplitPoint()
function printTwoParts(arr,n)
{
let splitPoint = findSplitPoint(arr, n);
if (splitPoint == -1 || splitPoint == n )
{
document.write("Not Possible");
return;
}
for (let i = 0; i < n; i++)
{
if(splitPoint == i)
document.write("<br>");
document.write(arr[i] + " ");
}
}
// Driver program
let arr = [1 , 2 , 3 , 4 , 5 , 5 ];
let n = arr.length;
printTwoParts(arr, n);
// contributed by sravan kumar
</script>
Time Complexity : O(n2)
Auxiliary Space : O(1)
An Efficient solution is to first compute the sum of the whole array from left to right. Now we traverse array from right and keep track of right sum, left sum can be computed by subtracting current element from whole sum.
Below is the implementation of above idea.
C++
// C++ program to split an array into Two
// equal sum subarrays
#include<bits/stdc++.h>
using namespace std;
// Returns split point. If not possible, then
// return -1.
int findSplitPoint(int arr[], int n)
{
// traverse array element and compute sum
// of whole array
int leftSum = 0;
for (int i = 0 ; i < n ; i++)
leftSum += arr[i];
// again traverse array and compute right sum
// and also check left_sum equal to right
// sum or not
int rightSum = 0;
for (int i=n-1; i >= 0; i--)
{
// add current element to right_sum
rightSum += arr[i];
// exclude current element to the left_sum
leftSum -= arr[i] ;
if (rightSum == leftSum)
return i ;
}
// if it is not possible to split array
// into two parts.
return -1;
}
// Prints two parts after finding split point using
// findSplitPoint()
void printTwoParts(int arr[], int n)
{
int splitPoint = findSplitPoint(arr, n);
if (splitPoint == -1 || splitPoint == n )
{
cout << "Not Possible" <<endl;
return;
}
for (int i = 0; i < n; i++)
{
if(splitPoint == i)
cout << endl;
cout << arr[i] << " " ;
}
}
// driver program
int main()
{
int arr[] = {1 , 2 , 3 , 4 , 5 , 5 };
int n = sizeof(arr)/sizeof(arr[0]);
printTwoParts(arr, n);
return 0;
}
Java
// java program to split an array
// into Two equal sum subarrays
import java.io.*;
class GFG {
// Returns split point. If not possible, then
// return -1.
static int findSplitPoint(int arr[], int n)
{
// traverse array element and compute sum
// of whole array
int leftSum = 0;
for (int i = 0 ; i < n ; i++)
leftSum += arr[i];
// again traverse array and compute right
// sum and also check left_sum equal to
// right sum or not
int rightSum = 0;
for (int i = n-1; i >= 0; i--)
{
// add current element to right_sum
rightSum += arr[i];
// exclude current element to the left_sum
leftSum -= arr[i] ;
if (rightSum == leftSum)
return i ;
}
// if it is not possible to split array
// into two parts.
return -1;
}
// Prints two parts after finding split
// point using findSplitPoint()
static void printTwoParts(int arr[], int n)
{
int splitPoint = findSplitPoint(arr, n);
if (splitPoint == -1 || splitPoint == n )
{
System.out.println("Not Possible" );
return;
}
for (int i = 0; i < n; i++)
{
if(splitPoint == i)
System.out.println();
System.out.print(arr[i] + " ");
}
}
// Driver program
public static void main (String[] args) {
int arr[] = {1 , 2 , 3 , 4 , 5 , 5 };
int n = arr.length;
printTwoParts(arr, n);
}
}
// This code is contributed by vt_m
Python3
# Python3 program to split
# an array into Two
# equal sum subarrays
# Returns split point.
# If not possible,
# then return -1.
def findSplitPoint(arr, n) :
# traverse array element and
# compute sum of whole array
leftSum = 0
for i in range(0, n) :
leftSum += arr[i]
# again traverse array and
# compute right sum and also
# check left_sum equal to
# right sum or not
rightSum = 0
for i in range(n-1, -1, -1) :
# add current element
# to right_sum
rightSum += arr[i]
# exclude current element
# to the left_sum
leftSum -= arr[i]
if (rightSum == leftSum) :
return i
# if it is not possible
# to split array into
# two parts.
return -1
# Prints two parts after
# finding split point
# using findSplitPoint()
def printTwoParts(arr, n) :
splitPoint = findSplitPoint(arr, n)
if (splitPoint == -1 or splitPoint == n ) :
print ("Not Possible")
return
for i in range (0, n) :
if(splitPoint == i) :
print ("")
print (arr[i], end = " ")
# Driver Code
arr = [1, 2, 3, 4, 5, 5]
n = len(arr)
printTwoParts(arr, n)
# This code is contributed by Manish Shaw
# (manishshaw1)
C#
// C# program to split an array
// into Two equal sum subarrays
using System;
class GFG {
// Returns split point. If not possible, then
// return -1.
static int findSplitPoint(int []arr, int n)
{
// traverse array element and compute sum
// of whole array
int leftSum = 0;
for (int i = 0 ; i < n ; i++)
leftSum += arr[i];
// again traverse array and compute right
// sum and also check left_sum equal to
// right sum or not
int rightSum = 0;
for (int i = n-1; i >= 0; i--)
{
// add current element to right_sum
rightSum += arr[i];
// exclude current element to the left_sum
leftSum -= arr[i] ;
if (rightSum == leftSum)
return i ;
}
// if it is not possible to split array
// into two parts.
return -1;
}
// Prints two parts after finding split
// point using findSplitPoint()
static void printTwoParts(int []arr, int n)
{
int splitPoint = findSplitPoint(arr, n);
if (splitPoint == -1 || splitPoint == n )
{
Console.Write("Not Possible" );
return;
}
for (int i = 0; i < n; i++)
{
if(splitPoint == i)
Console.WriteLine();
Console.Write(arr[i] + " ");
}
}
// Driver program
public static void Main (String[] args) {
int []arr = {1 , 2 , 3 , 4 , 5 , 5 };
int n = arr.Length;
printTwoParts(arr, n);
}
}
// This code is contributed by parashar
PHP
<?php
// PHP program to split
// an array into Two
// equal sum subarrays
// Returns split point.
// If not possible,
// then return -1.
function findSplitPoint($arr, $n)
{
// traverse array element and
// compute sum of whole array
$leftSum = 0;
for ( $i = 0 ; $i < $n ; $i++)
$leftSum += $arr[$i];
// again traverse array and
// compute right sum and also
// check left_sum equal to
// right sum or not
$rightSum = 0;
for ($i = $n - 1; $i >= 0; $i--)
{
// add current element
// to right_sum
$rightSum += $arr[$i];
// exclude current element
// to the left_sum
$leftSum -= $arr[$i] ;
if ($rightSum == $leftSum)
return $i ;
}
// if it is not possible
// to split array into
// two parts.
return -1;
}
// Prints two parts after
// finding split point
// using findSplitPoint()
function printTwoParts( $arr, $n)
{
$splitPoint = findSplitPoint($arr, $n);
if ($splitPoint == -1 or
$splitPoint == $n )
{
echo "Not Possible" ;
return;
}
for ( $i = 0; $i < $n; $i++)
{
if($splitPoint == $i)
echo "\n";
echo $arr[$i] , " " ;
}
}
// Driver Code
$arr = array(1, 2, 3, 4, 5, 5);
$n = count($arr);
printTwoParts($arr, $n);
// This code is contributed by anuj_67.
?>
JavaScript
<script>
// Javascript program to split an array
// into Two equal sum subarrays
// Returns split point. If not possible, then
// return -1.
function findSplitPoint(arr, n)
{
// traverse array element and compute sum
// of whole array
let leftSum = 0;
for (let i = 0 ; i < n ; i++)
leftSum += arr[i];
// again traverse array and compute right
// sum and also check left_sum equal to
// right sum or not
let rightSum = 0;
for (let i = n-1; i >= 0; i--)
{
// add current element to right_sum
rightSum += arr[i];
// exclude current element to the left_sum
leftSum -= arr[i] ;
if (rightSum == leftSum)
return i ;
}
// if it is not possible to split array
// into two parts.
return -1;
}
// Prints two parts after finding split
// point using findSplitPoint()
function printTwoParts(arr, n)
{
let splitPoint = findSplitPoint(arr, n);
if (splitPoint == -1 || splitPoint == n )
{
document.write("Not Possible" );
return;
}
for (let i = 0; i < n; i++)
{
if(splitPoint == i)
document.write("</br>");
document.write(arr[i] + " ");
}
}
let arr = [1 , 2 , 3 , 4 , 5 , 5 ];
let n = arr.length;
printTwoParts(arr, n);
// This code is contributed by rameshtravel07.
</script>
Time Complexity : O(n)
Auxiliary Space : O(1)
Related Topic: Subarrays, Subsequences, and Subsets in Array
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem