Sort a Rotated Sorted Array
Last Updated :
07 Jul, 2021
You are given a rotated sorted array and your aim is to restore its original sort in place.
Expected to use O(1) extra space and O(n) time complexity.
Examples:
Input : [3, 4, 1, 2]
Output : [1, 2, 3, 4]
Input : [2, 3, 4, 1]
Output : [1, 2, 3, 4]
We find the point of rotation. Then we rotate array using reversal algorithm.
1. First, find the split point where the sorting breaks.
2. Then call the reverse function in three steps.
- From zero index to split index.
- From split index to end index.
- From zero index to end index.
C++
// C++ implementation for restoring original
// sort in rotated sorted array
#include <bits/stdc++.h>
using namespace std;
// Function to restore the Original Sort
void restoreSortedArray(int arr[], int n)
{
for (int i = 0; i < n; i++) {
if (arr[i] > arr[i + 1]) {
// In reverse(), the first parameter
// is iterator to beginning element
// and second parameter is iterator
// to last element plus one.
reverse(arr, arr+i+1);
reverse(arr + i + 1, arr + n);
reverse(arr, arr + n);
}
}
}
// Function to print the Array
void printArray(int arr[], int size)
{
for (int i = 0; i < size; i++)
cout << arr[i] << " ";
}
// Driver function
int main()
{
int arr[] = { 3, 4, 5, 1, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
restoreSortedArray(arr, n);
printArray(arr, n);
return 0;
}
Java
// Java implementation for restoring original
// sort in rotated sorted array
class GFG
{
// Function to restore the Original Sort
static void restoreSortedArray(int arr[], int n)
{
for (int i = 0; i < n; i++)
{
if (arr[i] > arr[i + 1])
{
// In reverse(), the first parameter
// is iterator to beginning element
// and second parameter is iterator
// to last element plus one.
reverse(arr,0,i);
reverse(arr , i + 1, n);
reverse(arr,0, n);
}
}
}
static void reverse(int[] arr, int i, int j)
{
int temp;
while(i < j)
{
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
j--;
}
}
// Function to print the Array
static void printArray(int arr[], int size)
{
for (int i = 0; i < size; i++)
System.out.print(arr[i] + " ");
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 3, 4, 5, 1, 2 };
int n = arr.length;
restoreSortedArray(arr, n - 1);
printArray(arr, n);
}
}
// This code has been contributed by 29AjayKumar
Python3
# Python3 implementation for restoring original
# sort in rotated sorted array
# Function to restore the Original Sort
def restoreSortedArray(arr, n):
for i in range(n):
if (arr[i] > arr[i + 1]):
# In reverse(), the first parameter
# is iterator to beginning element
# and second parameter is iterator
# to last element plus one.
reverse(arr, 0, i);
reverse(arr, i + 1, n);
reverse(arr, 0, n);
def reverse(arr, i, j):
while (i < j):
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i += 1;
j -= 1;
# Function to print the Array
def printArray(arr, size):
for i in range(size):
print(arr[i], end="");
# Driver code
if __name__ == '__main__':
arr = [3, 4, 5, 1, 2];
n = len(arr);
restoreSortedArray(arr, n - 1);
printArray(arr, n);
# This code is contributed by 29AjayKumar
C#
// C# implementation for restoring original
// sort in rotated sorted array
using System;
class GFG
{
// Function to restore the Original Sort
static void restoreSortedArray(int []arr, int n)
{
for (int i = 0; i < n; i++)
{
if (arr[i] > arr[i + 1])
{
// In reverse(), the first parameter
// is iterator to beginning element
// and second parameter is iterator
// to last element plus one.
reverse(arr,0,i);
reverse(arr , i + 1, n);
reverse(arr,0, n);
}
}
}
static void reverse(int[] arr, int i, int j)
{
int temp;
while(i < j)
{
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
j--;
}
}
// Function to print the Array
static void printArray(int []arr, int size)
{
for (int i = 0; i < size; i++)
Console.Write(arr[i] + " ");
}
// Driver code
public static void Main(String[] args)
{
int[] arr = { 3, 4, 5, 1, 2 };
int n = arr.Length;
restoreSortedArray(arr, n - 1);
printArray(arr, n);
}
}
// This code contributed by Rajput-Ji
JavaScript
<script>
// JavaScript implementation for restoring original
// sort in rotated sorted array
// Function to restore the Original Sort
function restoreSortedArray(arr, n)
{
for (let i = 0; i < n; i++)
{
if (arr[i] > arr[i + 1])
{
// In reverse(), the first parameter
// is iterator to beginning element
// and second parameter is iterator
// to last element plus one.
reverse(arr,0,i);
reverse(arr , i + 1, n);
reverse(arr,0, n);
}
}
}
function reverse(arr, i, j)
{
let temp;
while(i < j)
{
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
j--;
}
}
// Function to print the Array
function printArray(arr, size)
{
for (let i = 0; i < size; i++)
document.write(arr[i] + " ");
}
// Driver Code
let arr = [ 3, 4, 5, 1, 2 ];
let n = arr.length;
restoreSortedArray(arr, n - 1);
printArray(arr, n)
</script>
Output:
1 2 3 4 5
We can binary search to find the rotation point as discussed here .
Efficient code approach using binary search:
- First find the index of minimum element (split index) in the array using binary search
- Then call the reverse function in three steps.
- From zero index to split index.
- From split index to end index.
- From zero index to end index.
C++
// C++ implementation for restoring original
// sort in rotated sorted array using binary search
#include <bits/stdc++.h>
using namespace std;
// Function to find start index of array
int findStartIndexOfArray(int arr[], int low,int high)
{
if (low>high)
{
return -1;
}
if (low == high)
{
return low;
}
int mid = low + (high-low)/2;
if(arr[mid] > arr[mid+1])
return mid+1;
if(arr[mid-1] > arr[mid])
return mid;
if(arr[low] > arr[mid])
return findStartIndexOfArray(arr, low, mid-1);
else
return findStartIndexOfArray(arr, mid+1, high);
}
// Function to restore the Original Sort
void restoreSortedArray(int arr[], int n)
{
// array is already sorted
if (arr[0] < arr[n-1])
return;
int start = findStartIndexOfArray(arr, 0, n-1);
// In reverse(), the first parameter
// is iterator to beginning element
// and second parameter is iterator
// to last element plus one.
reverse(arr, arr + start);
reverse(arr + start, arr + n);
reverse(arr, arr + n);
}
// Function to print the Array
void printArray(int arr[], int size)
{
for (int i = 0; i < size; i++)
cout << arr[i] << " ";
}
// Driver function
int main()
{
int arr[] = { 1, 2, 3, 4, 5};
int n = sizeof(arr) / sizeof(arr[0]);
restoreSortedArray(arr, n);
printArray(arr, n);
return 0;
}
Java
// Java implementation for restoring original
// sort in rotated sorted array using binary search
import java.util.*;
class GFG
{
// Function to find start index of array
static int findStartIndexOfArray(int arr[],
int low, int high)
{
if (low > high)
{
return -1;
}
if (low == high)
{
return low;
}
int mid = low + (high - low) / 2;
if (arr[mid] > arr[mid + 1])
{
return mid + 1;
}
if (arr[mid - 1] > arr[mid])
{
return mid;
}
if (arr[low] > arr[mid])
{
return findStartIndexOfArray(arr, low, mid - 1);
}
else
{
return findStartIndexOfArray(arr, mid + 1, high);
}
}
// Function to restore the Original Sort
static void restoreSortedArray(int arr[], int n)
{
// array is already sorted
if (arr[0] < arr[n - 1])
{
return;
}
int start = findStartIndexOfArray(arr, 0, n - 1);
// In reverse(), the first parameter
// is iterator to beginning element
// and second parameter is iterator
// to last element plus one.
Arrays.sort(arr, 0, start);
Arrays.sort(arr, start, n);
Arrays.sort(arr);
}
// Function to print the Array
static void printArray(int arr[], int size)
{
for (int i = 0; i < size; i++)
{
System.out.print(arr[i] + " ");
}
}
// Driver code
public static void main(String[] args)
{
int arr[] = {1, 2, 3, 4, 5};
int n = arr.length;
restoreSortedArray(arr, n);
printArray(arr, n);
}
}
// This code contributed by Rajput-Ji
Python3
# Python3 implementation for restoring original
# sort in rotated sorted array using binary search
# Function to find start index of array
def findStartIndexOfArray(arr, low, high):
if (low > high):
return -1;
if (low == high):
return low;
mid = low + (high - low) / 2;
if (arr[mid] > arr[mid + 1]):
return mid + 1;
if (arr[mid - 1] > arr[mid]):
return mid;
if (arr[low] > arr[mid]):
return findStartIndexOfArray(arr, low, mid - 1);
else:
return findStartIndexOfArray(arr, mid + 1, high);
# Function to restore the Original Sort
def restoreSortedArray(arr, n):
# array is already sorted
if (arr[0] < arr[n - 1]):
return;
start = findStartIndexOfArray(arr, 0, n - 1);
# In reverse(), the first parameter
# is iterator to beginning element
# and second parameter is iterator
# to last element plus one.
reverse(arr, 0, start);
reverse(arr, start, n);
reverse(arr);
# Function to print the Array
def printArray(arr, size):
for i in range(size):
print(arr[i], end="");
def reverse(arr, i, j):
while (i < j):
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i += 1;
j -= 1;
# Driver code
if __name__ == '__main__':
arr = [ 1, 2, 3, 4, 5 ];
n = len(arr);
restoreSortedArray(arr, n);
printArray(arr, n);
# This code is contributed by PrinciRaj1992
C#
// C# implementation for restoring original
// sort in rotated sorted array using binary search
using System;
class GFG
{
// Function to find start index of array
static int findStartIndexOfArray(int []arr,
int low, int high)
{
if (low > high)
{
return -1;
}
if (low == high)
{
return low;
}
int mid = low + (high - low) / 2;
if (arr[mid] > arr[mid + 1])
{
return mid + 1;
}
if (arr[mid - 1] > arr[mid])
{
return mid;
}
if (arr[low] > arr[mid])
{
return findStartIndexOfArray(arr, low, mid - 1);
}
else
{
return findStartIndexOfArray(arr, mid + 1, high);
}
}
// Function to restore the Original Sort
static void restoreSortedArray(int []arr, int n)
{
// array is already sorted
if (arr[0] < arr[n - 1])
{
return;
}
int start = findStartIndexOfArray(arr, 0, n - 1);
// In reverse(), the first parameter
// is iterator to beginning element
// and second parameter is iterator
// to last element plus one.
Array.Sort(arr, 0, start);
Array.Sort(arr, start, n);
Array.Sort(arr);
}
// Function to print the Array
static void printArray(int []arr, int size)
{
for (int i = 0; i < size; i++)
{
Console.Write(arr[i] + " ");
}
}
// Driver code
public static void Main()
{
int []arr = {1, 2, 3, 4, 5};
int n = arr.Length;
restoreSortedArray(arr, n);
printArray(arr, n);
}
}
/* This code contributed by PrinciRaj1992 */
JavaScript
<script>
// Javascript implementation for restoring original
// sort in rotated sorted array using binary search
// Function to find start index of array
function findStartIndexOfArray(arr, low, high)
{
if (low > high)
{
return -1;
}
if (low == high)
{
return low;
}
let mid = low + parseInt((high - low) / 2, 10);
if (arr[mid] > arr[mid + 1])
{
return mid + 1;
}
if (arr[mid - 1] > arr[mid])
{
return mid;
}
if (arr[low] > arr[mid])
{
return findStartIndexOfArray(arr, low,
mid - 1);
}
else
{
return findStartIndexOfArray(arr, mid + 1,
high);
}
}
// Function to restore the Original Sort
function restoreSortedArray(arr, n)
{
// Array is already sorted
if (arr[0] < arr[n - 1])
{
return;
}
let start = findStartIndexOfArray(arr, 0, n - 1);
// In reverse(), the first parameter
// is iterator to beginning element
// and second parameter is iterator
// to last element plus one.
arr.sort();
}
// Function to print the Array
function printArray(arr, size)
{
for(let i = 0; i < size; i++)
{
document.write(arr[i] + " ");
}
}
// Driver code
let arr = [ 1, 2, 3, 4, 5 ];
let n = arr.length;
restoreSortedArray(arr, n);
printArray(arr, n);
// This code is contributed by decode2207
</script>
Output:
1 2 3 4 5
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem