Reverse substrings between each pair of parenthesis
Last Updated :
12 Jul, 2025
Given a string str that consists of lowercase English letters and brackets. The task is to reverse the substrings in each pair of matching parentheses, starting from the innermost one. The result should not contain any brackets.
Examples:
Input: str = "(skeeg(for)skeeg)"
Output: geeksforgeeks
Input: str = "((ng)ipm(ca))"
Output: camping
Approach: This problem can be solved using a stack. First, whenever a '(' is encountered then push the index of the element into the stack, and whenever a ')' is encountered then get the top element of the stack as the latest index and reverse the string between the current index and index from the top of the stack. Follow this for the rest of the string and finally print the updated string.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Function to return the modified string
string reverseParentheses(string str, int len)
{
stack<int> st;
for (int i = 0; i < len; i++) {
// Push the index of the current
// opening bracket
if (str[i] == '(') {
st.push(i);
}
// Reverse the substring starting
// after the last encountered opening
// bracket till the current character
else if (str[i] == ')') {
reverse(str.begin() + st.top() + 1,
str.begin() + i);
st.pop();
}
}
// To store the modified string
string res = "";
for (int i = 0; i < len; i++) {
if (str[i] != ')' && str[i] != '(')
res += (str[i]);
}
return res;
}
// Driver code
int main()
{
string str = "(skeeg(for)skeeg)";
int len = str.length();
cout << reverseParentheses(str, len);
return 0;
}
Java
// Java implementation of the approach
import java.io.*;
import java.util.*;
class GFG {
static void reverse(char A[], int l, int h)
{
if (l < h)
{
char ch = A[l];
A[l] = A[h];
A[h] = ch;
reverse(A, l + 1, h - 1);
}
}
// Function to return the modified string
static String reverseParentheses(String str, int len)
{
Stack<Integer> st = new Stack<Integer>();
for (int i = 0; i < len; i++)
{
// Push the index of the current
// opening bracket
if (str.charAt(i) == '(')
{
st.push(i);
}
// Reverse the substring starting
// after the last encountered opening
// bracket till the current character
else if (str.charAt(i) == ')')
{
char[] A = str.toCharArray();
reverse(A, st.peek() + 1, i);
str = String.copyValueOf(A);
st.pop();
}
}
// To store the modified string
String res = "";
for (int i = 0; i < len; i++)
{
if (str.charAt(i) != ')' && str.charAt(i) != '(')
{
res += (str.charAt(i));
}
}
return res;
}
// Driver code
public static void main (String[] args)
{
String str = "(skeeg(for)skeeg)";
int len = str.length();
System.out.println(reverseParentheses(str, len));
}
}
// This code is contributed by avanitrachhadiya2155
Python3
# Python3 implementation of the approach
# Function to return the modified string
def reverseParentheses(strr, lenn):
st = []
for i in range(lenn):
# Push the index of the current
# opening bracket
if (strr[i] == '('):
st.append(i)
# Reverse the substring starting
# after the last encountered opening
# bracket till the current character
else if (strr[i] == ')'):
temp = strr[st[-1]:i + 1]
strr = strr[:st[-1]] + temp[::-1] + \
strr[i + 1:]
del st[-1]
# To store the modified string
res = ""
for i in range(lenn):
if (strr[i] != ')' and strr[i] != '('):
res += (strr[i])
return res
# Driver code
if __name__ == '__main__':
strr = "(skeeg(for)skeeg)"
lenn = len(strr)
st = [i for i in strr]
print(reverseParentheses(strr, lenn))
# This code is contributed by Mohit Kumar
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
using System.Text;
class GFG{
static void reverse(char[] A, int l, int h)
{
if (l < h)
{
char ch = A[l];
A[l] = A[h];
A[h] = ch;
reverse(A, l + 1, h - 1);
}
}
// Function to return the modified string
static string reverseParentheses(string str, int len)
{
Stack<int> st = new Stack<int>();
for(int i = 0; i < len; i++)
{
// Push the index of the current
// opening bracket
if (str[i] == '(')
{
st.Push(i);
}
// Reverse the substring starting
// after the last encountered opening
// bracket till the current character
else if (str[i] == ')')
{
char[] A = str.ToCharArray();
reverse(A, st.Peek() + 1, i);
str = new string(A);
st.Pop();
}
}
// To store the modified string
string res = "";
for(int i = 0; i < len; i++)
{
if (str[i] != ')' && str[i] != '(')
{
res += str[i];
}
}
return res;
}
// Driver code
static public void Main()
{
string str = "(skeeg(for)skeeg)";
int len = str.Length;
Console.WriteLine(reverseParentheses(str, len));
}
}
// This code is contributed by rag2127
JavaScript
<script>
// Javascript implementation of the approach
function reverse(A,l,h)
{
if (l < h)
{
let ch = A[l];
A[l] = A[h];
A[h] = ch;
reverse(A, l + 1, h - 1);
}
}
// Function to return the modified string
function reverseParentheses(str,len)
{
let st = [];
for (let i = 0; i < len; i++)
{
// Push the index of the current
// opening bracket
if (str[i] == '(')
{
st.push(i);
}
// Reverse the substring starting
// after the last encountered opening
// bracket till the current character
else if (str[i] == ')')
{
let A = [...str]
reverse(A, st[st.length-1] + 1, i);
str = [...A];
st.pop();
}
}
// To store the modified string
let res = "";
for (let i = 0; i < len; i++)
{
if (str[i] != ')' && str[i] != '(')
{
res += (str[i]);
}
}
return res;
}
// Driver code
let str = "(skeeg(for)skeeg)";
let len = str.length;
document.write(reverseParentheses(str, len));
// This code is contributed by patel2127
</script>
Time Complexity: O(n2), where n is the length of the given string.
Auxiliary Space: O(n)
Efficient Approach:
Our Approach is simple and we can reduce the space complexity from O(n) to O(1) that is constant space .
Approach:
We create a function for reversing substrings between the opening and closing brackets one by one, beginning with the innermost one. We can use a while loop to keep doing this until we run out of brackets.
In each iteration of the while loop, we first find the index of the string's initial closing bracket. We exit the loop if there is no closing bracket. Otherwise, we search backwards from the closing bracket to identify the appropriate starting bracket.
The reverseSubstring function is then used to reverse the substring between the opening and closing brackets. Finally, we use the erase function to delete the opening and closing brackets from the string.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
string reverseSubstring(string str, int start, int end) {
reverse(str.begin()+start, str.begin()+end+1);
return str;
}
string reverseParentheses(string str) {
int n = str.length();
int start, end;
while (true) {
// find the first closing bracket
end = str.find(')', 0);
if (end == string::npos) {
break; // no more closing brackets, we're done
}
// find the corresponding opening bracket
start = str.rfind('(', end);
// reverse the substring between the opening and closing brackets
str = reverseSubstring(str, start+1, end-1);
// remove the opening and closing brackets
str.erase(start, 1);
str.erase(end-1, 1);
}
return str;
}
int main() {
string str="(skeeg(for)skeeg)";
cout<<reverseParentheses(str)<<endl;
return 0;
}
Java
import java.util.Stack;
public class GFG {
static String ReverseSubstring(String str, int start,
int end)
{
StringBuilder reversed = new StringBuilder();
for (int i = end; i >= start; i--) {
reversed.append(str.charAt(i));
}
return str.substring(0, start) + reversed.toString()
+ str.substring(end + 1);
}
static String ReverseParentheses(String str)
{
int start, end;
while (true) {
// find the first closing bracket
end = str.indexOf(')');
if (end == -1) {
break; // no more closing brackets, we're
// done
}
// find the corresponding opening bracket
start = str.lastIndexOf('(', end);
// reverse the substring between the opening and
// closing brackets
str = ReverseSubstring(str, start + 1, end - 1);
// remove the opening and closing brackets
str = str.substring(0, start)
+ str.substring(start + 1, end)
+ str.substring(end + 1);
}
return str;
}
public static void main(String[] args)
{
String str = "(skeeg(for)skeeg)";
System.out.println(ReverseParentheses(str));
}
}
Python3
def reverse_substring(s, start, end):
return s[:start] + s[start:end+1][::-1] + s[end+1:]
def reverse_parentheses(s):
while True:
end = s.find(')')
if end == -1:
break
start = s.rfind('(', 0, end)
s = reverse_substring(s, start+1, end-1)
s = s[:start] + s[start+1:]
s = s[:end-1] + s[end:]
return s
if __name__ == "__main__":
s = "(skeeg(for)skeeg)"
print(reverse_parentheses(s))
C#
using System;
using System.Text;
class Program
{
static string ReverseSubstring(string str, int start, int end)
{
StringBuilder reversed = new StringBuilder();
for (int i = end; i >= start; i--)
{
reversed.Append(str[i]);
}
return str.Substring(0, start) + reversed.ToString() + str.Substring(end + 1);
}
static string ReverseParentheses(string str)
{
int start, end;
while (true)
{
// find the first closing bracket
end = str.IndexOf(')');
if (end == -1)
{
break; // no more closing brackets, we're done
}
// find the corresponding opening bracket
start = str.LastIndexOf('(', end);
// reverse the substring between the opening and closing brackets
str = ReverseSubstring(str, start + 1, end - 1);
// remove the opening and closing brackets
str = str.Substring(0, start) + str.Substring(start + 1, end - start - 1) + str.Substring(end + 1);
}
return str;
}
static void Main(string[] args)
{
string str = "(skeeg(for)skeeg)";
Console.WriteLine(ReverseParentheses(str));
}
}
JavaScript
function reverseSubstring(str, start, end) {
return str.slice(0, start) +
str.slice(start, end+1).split('').reverse().join('') +
str.slice(end+1);
}
function reverseParentheses(str) {
let start, end;
while (true) {
// find the first closing bracket
end = str.indexOf(')');
if (end === -1) {
break; // no more closing brackets, we're done
}
// find the corresponding opening bracket
start = str.lastIndexOf('(', end);
// reverse the substring between the opening and closing brackets
str = reverseSubstring(str, start+1, end-1);
// remove the opening and closing brackets
str = str.slice(0, start) + str.slice(start+1, end) + str.slice(end+1);
}
return str;
}
let str = "(skeeg(for)skeeg)";
console.log(reverseParentheses(str));
Time Complexity: O(n^2), where n is the length of the given string.
Auxiliary Space: O(1),No extra space is used.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem