Replace every element with the least greater element on its right
Last Updated :
26 Oct, 2023
Given an array of integers, replace every element with the least greater element on its right side in the array. If there are no greater elements on the right side, replace it with -1.
Examples:
Input: [8, 58, 71, 18, 31, 32, 63, 92,
43, 3, 91, 93, 25, 80, 28]
Output: [18, 63, 80, 25, 32, 43, 80, 93,
80, 25, 93, -1, 28, -1, -1]
A naive method is to run two loops. The outer loop will one by one pick array elements from left to right. The inner loop will find the smallest element greater than the picked element on its right side. Finally, the outer loop will replace the picked element with the element found by inner loop. The time complexity of this method will be O(n2).
A tricky solution would be to use Binary Search Trees. We start scanning the array from right to left and insert each element into the BST. For each inserted element, we replace it in the array by its inorder successor in BST. If the element inserted is the maximum so far (i.e. its inorder successor doesn't exist), we replace it by -1.
Below is the implementation of the above idea –
C++
// C++ program to replace every element with the
// least greater element on its right
#include <bits/stdc++.h>
using namespace std;
// A binary Tree node
struct Node {
int data;
Node *left, *right;
};
// A utility function to create a new BST node
Node* newNode(int item)
{
Node* temp = new Node;
temp->data = item;
temp->left = temp->right = NULL;
return temp;
}
/* A utility function to insert a new node with
given data in BST and find its successor */
Node* insert(Node* root, int val, int& suc)
{
/* If the tree is empty, return a new node */
if (!root)
return newNode(val);
// go to right subtree
if (val >= root->data)
root->right = insert(root->right, val, suc);
// If key is smaller than root's key, go to left
// subtree and set successor as current node
else {
suc = root->data;
root->left = insert(root->left, val, suc);
}
return root;
}
// Function to replace every element with the
// least greater element on its right
void replace(int arr[], int n)
{
Node* root = nullptr;
// start from right to left
for (int i = n - 1; i >= 0; i--) {
int suc = -1;
// insert current element into BST and
// find its inorder successor
root = insert(root, arr[i], suc);
arr[i] = suc;
}
}
// Driver Program to test above functions
int main()
{
int arr[] = { 8, 58, 71, 18, 31, 32, 63, 92,
43, 3, 91, 93, 25, 80, 28 };
int n = sizeof(arr) / sizeof(arr[0]);
replace(arr, n);
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129)
Java
// Java program to replace every element with
// the least greater element on its right
import java.io.*;
class BinarySearchTree {
// A binary Tree node
class Node {
int data;
Node left, right;
Node(int d)
{
data = d;
left = right = null;
}
}
// Root of BST
static Node root;
static Node succ;
// Constructor
BinarySearchTree()
{
root = null;
succ = null;
}
// A utility function to insert a new node with
// given data in BST and find its successor
Node insert(Node node, int data)
{
// If the tree is empty, return a new node
if (node == null) {
node = new Node(data);
}
// If key is smaller than root's key,
// go to left subtree and set successor
// as current node
if (data < node.data) {
succ = node;
node.left = insert(node.left, data);
}
// Go to right subtree
else if (data > node.data)
node.right = insert(node.right, data);
return node;
}
// Function to replace every element with the
// least greater element on its right
static void replace(int arr[], int n)
{
BinarySearchTree tree = new BinarySearchTree();
// start from right to left
for (int i = n - 1; i >= 0; i--) {
succ = null;
// Insert current element into BST and
// find its inorder successor
root = tree.insert(root, arr[i]);
// Replace element by its inorder
// successor in BST
if (succ != null)
arr[i] = succ.data;
// No inorder successor
else
arr[i] = -1;
}
}
// Driver code
public static void main(String[] args)
{
int arr[]
= new int[] { 8, 58, 71, 18, 31, 32, 63, 92,
43, 3, 91, 93, 25, 80, 28 };
int n = arr.length;
replace(arr, n);
for (int i = 0; i < n; i++)
System.out.print(arr[i] + " ");
}
}
// The code is contributed by Tushar Bansal
Python3
# Python3 program to replace every element
# with the least greater element on its right
# A binary Tree node
class Node:
def __init__(self, d):
self.data = d
self.left = None
self.right = None
# A utility function to insert a new node with
# given data in BST and find its successor
def insert(node, data):
global succ
# If the tree is empty, return a new node
root = node
if (node == None):
return Node(data)
# If key is smaller than root's key, go to left
# subtree and set successor as current node
if (data < node.data):
# print("1")
succ = node
root.left = insert(node.left, data)
# Go to right subtree
elif (data > node.data):
root.right = insert(node.right, data)
return root
# Function to replace every element with the
# least greater element on its right
def replace(arr, n):
global succ
root = None
# Start from right to left
for i in range(n - 1, -1, -1):
succ = None
# Insert current element into BST and
# find its inorder successor
root = insert(root, arr[i])
# Replace element by its inorder
# successor in BST
if (succ):
arr[i] = succ.data
# No inorder successor
else:
arr[i] = -1
return arr
# Driver code
if __name__ == '__main__':
arr = [8, 58, 71, 18, 31, 32, 63,
92, 43, 3, 91, 93, 25, 80, 28]
n = len(arr)
succ = None
arr = replace(arr, n)
print(*arr)
# This code is contributed by mohit kumar 29
C#
// C# program to replace every element with
// the least greater element on its right
using System;
class BinarySearchTree {
// A binary Tree node
public class Node {
public int data;
public Node left, right;
public Node(int d)
{
data = d;
left = right = null;
}
}
// Root of BST
public static Node root;
public static Node succ;
// Constructor
public BinarySearchTree()
{
root = null;
succ = null;
}
// A utility function to insert a new node with
// given data in BST and find its successor
public static Node insert(Node node, int data)
{
// If the tree is empty, return a new node
if (node == null) {
node = new Node(data);
}
// If key is smaller than root's key,
// go to left subtree and set successor
// as current node
if (data < node.data) {
succ = node;
node.left = insert(node.left, data);
}
// Go to right subtree
else if (data > node.data) {
node.right = insert(node.right, data);
}
return node;
}
// Function to replace every element with the
// least greater element on its right
public static void replace(int[] arr, int n)
{
// BinarySearchTree tree = new BinarySearchTree();
// Start from right to left
for (int i = n - 1; i >= 0; i--) {
succ = null;
// Insert current element into BST and
// find its inorder successor
root = BinarySearchTree.insert(root, arr[i]);
// Replace element by its inorder
// successor in BST
if (succ != null) {
arr[i] = succ.data;
}
// No inorder successor
else {
arr[i] = -1;
}
}
}
// Driver code
static public void Main()
{
int[] arr = { 8, 58, 71, 18, 31, 32, 63, 92,
43, 3, 91, 93, 25, 80, 28 };
int n = arr.Length;
replace(arr, n);
for (int i = 0; i < n; i++) {
Console.Write(arr[i] + " ");
}
}
}
// This code is contributed by rag2127
JavaScript
<script>
// Javascript program to
// replace every element with
// the least greater element
// on its right
// A binary Tree node
class Node{
constructor(d)
{
this.data=d;
this.left=this.right=null;
}
}
// Root of BST
let root=null;
let succ=null;
// A utility function to insert a new node with
// given data in BST and find its successor
function insert(node,data)
{
// If the tree is empty, return a new node
if (node == null)
{
node = new Node(data);
}
// If key is smaller than root's key,
// go to left subtree and set successor
// as current node
if (data < node.data)
{
succ = node;
node.left = insert(node.left, data);
}
// Go to right subtree
else if (data > node.data)
node.right = insert(node.right, data);
return node;
}
// Function to replace every element with the
// least greater element on its right
function replace(arr,n)
{
// start from right to left
for(let i = n - 1; i >= 0; i--)
{
succ = null;
// Insert current element into BST and
// find its inorder successor
root = insert(root, arr[i]);
// Replace element by its inorder
// successor in BST
if (succ != null)
arr[i] = succ.data;
// No inorder successor
else
arr[i] = -1;
}
}
// Driver code
let arr=[8, 58, 71, 18, 31,
32, 63, 92, 43, 3,
91, 93, 25, 80, 28 ];
let n = arr.length;
replace(arr, n);
for(let i = 0; i < n; i++)
document.write(arr[i] + " ");
// This code is contributed by unknown2108
</script>
Output18 63 80 25 32 43 80 93 80 25 93 -1 28 -1 -1
Time complexity: O(n2), As it uses BST. The worst-case will happen when array is sorted in ascending or descending order. The complexity can easily be reduced to O(nlogn) by using balanced trees like red-black trees.
Auxiliary Space: O(h), Here h is the height of the BST and the extra space is used in recursion call stack.
Another Approach:
We can use the Next Greater Element using stack algorithm to solve this problem in O(Nlog(N)) time and O(N) space.
Algorithm:
- First, we take an array of pairs namely temp, and store each element and its index in this array,i.e. temp[i] will be storing {arr[i],i}.
- Sort the array according to the array elements.
- Now get the next greater index for each and every index of the temp array in an array namely index by using Next Greater Element using stack.
- Now index[i] stores the index of the next least greater element of the element temp[i].first and if index[i] is -1, then it means that there is no least greater element of the element temp[i].second at its right side.
- Now take a result array where result[i] will be equal to a[indexes[temp[i].second]] if index[i] is not -1 otherwise result[i] will be equal to -1.
Below is the implementation of the above approach
C++
#include <bits/stdc++.h>
using namespace std;
// function to get the next least greater index for each and
// every temp.second of the temp array using stack this
// function is similar to the Next Greater element for each
// and every element of an array using stack difference is
// we are finding the next greater index not value and the
// indexes are stored in the temp[i].second for all i
vector<int> nextGreaterIndex(vector<pair<int, int> >& temp)
{
int n = temp.size();
// initially result[i] for all i is -1
vector<int> res(n, -1);
stack<int> stack;
for (int i = 0; i < n; i++) {
// if the stack is empty or this index is smaller
// than the index stored at top of the stack then we
// push this index to the stack
if (stack.empty() || temp[i].second < stack.top())
stack.push(
temp[i].second); // notice temp[i].second is
// the index
// else this index (i.e. temp[i].second) is greater
// than the index stored at top of the stack we pop
// all the indexes stored at stack's top and for all
// these indexes we make this index i.e.
// temp[i].second as their next greater index
else {
while (!stack.empty()
&& temp[i].second > stack.top()) {
res[stack.top()] = temp[i].second;
stack.pop();
}
// after that push the current index to the
// stack
stack.push(temp[i].second);
}
}
// now res will store the next least greater indexes for
// each and every indexes stored at temp[i].second for
// all i
return res;
}
// now we will be using above function for finding the next
// greater index for each and every indexes stored at
// temp[i].second
vector<int> replaceByLeastGreaterUsingStack(int arr[],
int n)
{
// first of all in temp we store the pairs of {arr[i].i}
vector<pair<int, int> > temp;
for (int i = 0; i < n; i++) {
temp.push_back({ arr[i], i });
}
// we sort the temp according to the first of the pair
// i.e value
sort(temp.begin(), temp.end(),
[](const pair<int, int>& a,
const pair<int, int>& b) {
if (a.first == b.first)
return a.second > b.second;
return a.first < b.first;
});
// now indexes vector will store the next greater index
// for each temp[i].second index
vector<int> indexes = nextGreaterIndex(temp);
// we initialize a result vector with all -1
vector<int> res(n, -1);
for (int i = 0; i < n; i++) {
// now if there is no next greater index after the
// index temp[i].second the result will be -1
// otherwise the result will be the element of the
// array arr at index indexes[temp[i].second]
if (indexes[temp[i].second] != -1)
res[temp[i].second]
= arr[indexes[temp[i].second]];
}
// return the res which will store the least greater
// element of each and every element in the array at its
// right side
return res;
}
// driver code
int main()
{
int arr[] = { 8, 58, 71, 18, 31, 32, 63, 92,
43, 3, 91, 93, 25, 80, 28 };
int n = sizeof(arr) / sizeof(int);
auto res = replaceByLeastGreaterUsingStack(arr, n);
cout << "Least Greater elements on the right side are "
<< endl;
for (int i : res)
cout << i << ' ';
cout << endl;
return 0;
} // this code is contributed by Dipti Prakash Sinha
Java
// Java program for above approach
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Stack;
public class GFF {
// function to get the next least greater index for each
// and every temp.second of the temp array using stack
// this function is similar to the Next Greater element
// for each and every element of an array using stack
// difference is we are finding the next greater index
// not value and the indexes are stored in the
// temp[i].second for all i
static int[] nextGreaterIndex(ArrayList<int[]> temp)
{
int n = temp.size();
// initially result[i] for all i is -1
int[] res = new int[n];
Arrays.fill(res, -1);
Stack<Integer> stack = new Stack<Integer>();
for (int i = 0; i < n; i++) {
// if the stack is empty or this index is
// smaller than the index stored at top of the
// stack then we push this index to the stack
if (stack.empty()
|| temp.get(i)[1] < stack.peek())
stack.push(temp.get(
i)[1]); // notice temp[i].second is
// the index
// else this index (i.e. temp[i].second) is
// greater than the index stored at top of the
// stack we pop all the indexes stored at
// stack's top and for all these indexes we make
// this index i.e. temp[i].second as their next
// greater index
else {
while (!stack.empty()
&& temp.get(i)[1] > stack.peek()) {
res[stack.peek()] = temp.get(i)[1];
stack.pop();
}
// after that push the current index to the
// stack
stack.push(temp.get(i)[1]);
}
}
// now res will store the next least greater indexes
// for each and every indexes stored at
// temp[i].second for all i
return res;
}
// now we will be using above function for finding the
// next greater index for each and every indexes stored
// at temp[i].second
static int[] replaceByLeastGreaterUsingStack(int arr[],
int n)
{
// first of all in temp we store the pairs of
// {arr[i].i}
ArrayList<int[]> temp = new ArrayList<int[]>();
for (int i = 0; i < n; i++) {
temp.add(new int[] { arr[i], i });
}
// we sort the temp according to the first of the
// pair i.e value
Collections.sort(temp, (a, b) -> {
if (a[0] == b[0])
return b[1] - a[1];
return a[0] - b[0];
});
// now indexes vector will store the next greater
// index for each temp[i].second index
int[] indexes = nextGreaterIndex(temp);
// we initialize a result vector with all -1
int[] res = new int[n];
Arrays.fill(res, -1);
for (int i = 0; i < n; i++) {
// now if there is no next greater index after
// the index temp[i].second the result will be
// -1 otherwise the result will be the element
// of the array arr at index
// indexes[temp[i].second]
if (indexes[temp.get(i)[1]] != -1)
res[temp.get(i)[1]]
= arr[indexes[temp.get(i)[1]]];
}
// return the res which will store the least greater
// element of each and every element in the array at
// its right side
return res;
}
// driver code
public static void main(String[] args)
{
int arr[] = { 8, 58, 71, 18, 31, 32, 63, 92,
43, 3, 91, 93, 25, 80, 28 };
int n = arr.length;
int[] res = replaceByLeastGreaterUsingStack(arr, n);
System.out.println(
"Least Greater elements on the right side are ");
for (int i : res)
System.out.print(i + " ");
System.out.println();
}
}
// This code is contributed by Lovely Jain
Python3
# function to get the next least greater index for each and
# every temp[1] of the temp array using stack this
# function is similar to the Next Greater element for each
# and every element of an array using stack difference is
# we are finding the next greater index not value and the
# indexes are stored in the temp[i][1] for all i
def nextGreaterIndex(temp):
n = len(temp)
# initially result[i] for all i is -1
res = [-1 for i in range(n)]
stack = []
for i in range(n):
# if the stack is empty or this index is smaller
# than the index stored at top of the stack then we
# append this index to the stack
if (len(stack) == 0 or temp[i][1] < stack[-1]):
stack.append(temp[i][1]) # notice temp[i][1] is
# the index
# else this index (i.e. temp[i][1]) is greater
# than the index stored at top of the stack we pop
# all the indexes stored at stack's top and for all
# these indexes we make this index i.e.
# temp[i][1] as their next greater index
else:
while (len(stack) > 0 and temp[i][1] > stack[-1]):
res[stack[-1]] = temp[i][1]
stack.pop()
# after that append the current index to the stack
stack.append(temp[i][1])
# now res will store the next least greater indexes for
# each and every indexes stored at temp[i][1] for
# all i
return res
# now we will be using above function for finding the next
# greater index for each and every indexes stored at
# temp[i][1]
def replaceByLeastGreaterUsingStack(arr, n):
# first of all in temp we store the pairs of {arr[i].i}
temp = []
for i in range(n):
temp.append([arr[i], i])
# we sort the temp according to the first of the pair
# i.e value
temp.sort()
# now indexes vector will store the next greater index
# for each temp[i][1] index
indexes = nextGreaterIndex(temp)
# we initialize a result vector with all -1
res = [-1 for i in range(n)]
for i in range(n):
# now if there is no next greater index after the
# index temp[i][1] the result will be -1
# otherwise the result will be the element of the
# array arr at index indexes[temp[i][1]]
if (indexes[temp[i][1]] != -1):
res[temp[i][1]] = arr[indexes[temp[i][1]]]
# return the res which will store the least greater
# element of each and every element in the array at its
# right side
return res
# driver code
arr = [8, 58, 71, 18, 31, 32, 63, 92, 43, 3, 91, 93, 25, 80, 28]
n = len(arr)
res = replaceByLeastGreaterUsingStack(arr, n)
print("Least Greater elements on the right side are ")
for i in res:
print(i, end=' ')
print()
# this code is contributed by shinjanpatra
C#
using System;
using System.Collections.Generic;
using System.Linq;
class GFG {
// function to get the next least greater index for each
// and every temp.second of the temp array using stack
// this function is similar to the Next Greater element
// for each and every element of an array using stack
// difference is we are finding the next greater index
// not value and the indexes are stored in the
// temp[i].second for all i
static int[] nextGreaterIndex(List<int[]> temp)
{
int n = temp.Count();
// initially result[i] for all i is -1
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = -1;
}
Stack<int> stack = new Stack<int>();
for (int i = 0; i < n; i++) {
// if the stack is empty or this index is
// smaller than the index stored at top of the
// stack then we push this index to the stack
if (stack.Count() == 0
|| temp[i][1] < stack.Peek()) {
stack.Push(temp[i][1]); // notice temp[i][1]
// is the index
}
// else this index (i.e. temp[i][1]) is
// greater than the index stored at top of the
// stack we pop all the indexes stored at
// stack's top and for all these indexes we make
// this index i.e. temp[i][1] as their next
// greater index
else {
while (stack.Count() != 0
&& temp[i][1] > stack.Peek()) {
res[stack.Peek()] = temp[i][1];
stack.Pop();
}
// after that push the current index to the
// stack
stack.Push(temp[i][1]);
}
}
// now res will store the next least greater indexes
// for each and every indexes stored at
// temp[i][1] for all i
return res;
}
// now we will be using above function for finding the
// next greater index for each and every indexes stored
// at temp[i][1]
static int[] replaceByLeastGreaterUsingStack(int[] arr,
int n)
{
// first of all in temp we store the pairs of
// {arr[i].i}
List<int[]> temp = new List<int[]>();
for (int i = 0; i < n; i++) {
temp.Add(new int[] { arr[i], i });
}
// we sort the temp according to the first of the
// pair i.e value
temp.Sort((a, b) = > {
if (a[0] == b[0])
return a[1] - b[1];
return a[0] - b[0];
});
// now indexes vector will store the next greater
// index for each temp[i][1] index
int[] indexes = nextGreaterIndex(temp);
// we initialize a result vector with all -1
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = -1;
}
for (int i = 0; i < n; i++) {
// now if there is no next greater index after
// the index temp[i][1] the result will be
// -1 otherwise the result will be the element
// of the array arr at index
// indexes[temp[i][1]]
if (indexes[temp[i][1]] != -1)
res[temp[i][1]] = arr[indexes[temp[i][1]]];
}
// return the res which will store the least greater
// element of each and every element in the array at
// its right side
return res;
}
// driver code
public static void Main()
{
int[] arr
= new int[] { 8, 58, 71, 18, 31, 32, 63, 92,
43, 3, 91, 93, 25, 80, 28 };
int n = arr.Length;
int[] res = replaceByLeastGreaterUsingStack(arr, n);
Console.WriteLine(
"Least Greater elements on the right side are ");
foreach(var i in res) Console.Write(i + " ");
Console.WriteLine();
}
}
// This code is contributed by Tapesh (tapeshdua420)
JavaScript
<script>
// function to get the next least greater index for each and
// every temp[1] of the temp array using stack this
// function is similar to the Next Greater element for each
// and every element of an array using stack difference is
// we are finding the next greater index not value and the
// indexes are stored in the temp[i][1] for all i
function mycmp(a,b){
if(a[0] == b[0])
return b[1] - a[1];
return a[0] - b[0];
}
function nextGreaterIndex(temp)
{
let n = temp.length;
// initially result[i] for all i is -1
let res = new Array(n).fill(-1);
let stack = [];
for (let i = 0; i < n; i++) {
// if the stack is empty or this index is smaller
// than the index stored at top of the stack then we
// push this index to the stack
if (stack.length == 0 || temp[i][1] < stack[stack.length-1])
stack.push(temp[i][1]); // notice temp[i][1] is
// the index
// else this index (i.e. temp[i][1]) is greater
// than the index stored at top of the stack we pop
// all the indexes stored at stack's top and for all
// these indexes we make this index i.e.
// temp[i][1] as their next greater index
else {
while (stack.length > 0 && temp[i][1] > stack[stack.length-1]) {
res[stack[stack.length-1]] = temp[i][1];
stack.pop();
}
// after that push the current index to the stack
stack.push(temp[i][1]);
}
}
// now res will store the next least greater indexes for
// each and every indexes stored at temp[i][1] for
// all i
return res;
}
// now we will be using above function for finding the next
// greater index for each and every indexes stored at
// temp[i][1]
function replaceByLeastGreaterUsingStack(arr,n)
{
// first of all in temp we store the pairs of {arr[i].i}
let temp = [];
for (let i = 0; i < n; i++) {
temp.push([arr[i], i]);
}
// we sort the temp according to the first of the pair
// i.e value
temp.sort(mycmp);
// now indexes vector will store the next greater index
// for each temp[i][1] index
let indexes = nextGreaterIndex(temp);
// we initialize a result vector with all -1
let res = new Array(n).fill(-1);
for (let i = 0; i < n; i++) {
// now if there is no next greater index after the
// index temp[i][1] the result will be -1
// otherwise the result will be the element of the
// array arr at index indexes[temp[i][1]]
if (indexes[temp[i][1]] != -1)
res[temp[i][1]]
= arr[indexes[temp[i][1]]];
}
// return the res which will store the least greater
// element of each and every element in the array at its
// right side
return res;
}
// driver code
let arr = [ 8, 58, 71, 18, 31, 32, 63, 92,
43, 3, 91, 93, 25, 80, 28 ];
let n = arr.length;
let res = replaceByLeastGreaterUsingStack(arr, n);
document.write("Least Greater elements on the right side are ","</br>");
for (let i of res)
document.write(i,' ');
document.write("</br>");
// this code is contributed by shinjanpatra
</script>
OutputLeast Greater elements on the right side are
18 63 80 25 32 43 80 93 80 25 93 -1 28 -1 -1
Time Complexity: O(N log N)
Space Complexity: O(N)
Another approach with set
A different way to think about the problem is listing our requirements and then thinking over it to find a solution. If we traverse the array from backwards, we need a data structure(ds) to support:
- Insert an element into our ds in sorted order (so at any point of time the elements in our ds are sorted)
- Finding the upper bound of the current element (upper bound will give just greater element from our ds if present)
Carefully observing at our requirements, a set is what comes in mind.
Why not multiset? Well we can use a multiset but there is no need to store an element more than once.
Let's code our approach
Time and space complexity: We insert each element in our set and find upper bound for each element using a loop so its time complexity is O(n*log(n)). We are storing each element in our set so space complexity is O(n)
C++
#include <iostream>
#include <set>
#include <vector>
using namespace std;
void solve(vector<int>& arr)
{
set<int> s;
for (int i = arr.size() - 1; i >= 0;
i--) { // traversing the array backwards
s.insert(arr[i]); // inserting the element into set
auto it
= s.upper_bound(arr[i]); // finding upper bound
if (it == s.end())
arr[i] = -1; // if upper_bound does not exist
// then -1
else
arr[i] = *it; // if upper_bound exists, lets
// take it
}
}
void printArray(vector<int>& arr)
{
for (int i : arr)
cout << i << " ";
cout << "\n";
}
int main()
{
vector<int> arr = { 8, 58, 71, 18, 31, 32, 63, 92,
43, 3, 91, 93, 25, 80, 28 };
printArray(arr);
solve(arr);
printArray(arr);
return 0;
}
Java
import java.util.*;
public class Main {
public static void main(String[] args)
{
int[] arr = { 8, 58, 71, 18, 31, 32, 63, 92,
43, 3, 91, 93, 25, 80, 28 };
printArray(arr);
solve(arr);
printArray(arr);
}
public static void solve(int[] arr)
{
TreeSet<Integer> s = new TreeSet<>();
for (int i = arr.length - 1; i >= 0;
i--) { // traversing the array backwards
s.add(arr[i]); // inserting the element into set
Integer it
= s.higher(arr[i]); // finding upper bound
// (higher in java)
if (it == null)
arr[i] = -1; // if upper_bound does not
// exist then -1
else
arr[i] = it; // if upper_bound exists, lets
// take it
}
}
public static void printArray(int[] arr)
{
for (int i : arr)
System.out.print(i + " ");
System.out.println();
}
}
// This code is contributed by Tapesh (tapeshdua420)
Python3
from typing import List
from bisect import bisect_right
def solve(arr: List[int]) -> List[int]:
s = set()
for i in range(len(arr) - 1, -1, -1):
s.add(arr[i])
upper_bound = bisect_right(sorted(s), arr[i])
if upper_bound == len(s):
arr[i] = -1
else:
arr[i] = sorted(s)[upper_bound]
return arr
def print_array(arr: List[int]):
print(*arr)
if __name__ == "__main__":
arr = [8, 58, 71, 18, 31, 32, 63, 92, 43, 3, 91, 93, 25, 80, 28]
print_array(arr)
solve(arr)
print_array(arr)
# This code is contributed by vikranshirsath177.
C#
// Include namespace system
using System;
using System.Collections.Generic;
public class GFG {
public static void Main(String[] args)
{
int[] arr = { 8, 58, 71, 18, 31, 32, 63, 92,
43, 3, 91, 93, 25, 80, 28 };
GFG.printArray(arr);
GFG.solve(arr);
GFG.printArray(arr);
}
public static void solve(int[] arr)
{
var s = new SortedSet<int>();
for (int i = arr.Length - 1; i >= 0; i--) {
// traversing the array backwards
s.Add(arr[i]);
// inserting the element into set
var it = -1;
// finding upper bound
foreach(int j in s)
{
if (j > arr[i]) {
it = j;
break;
}
}
if (it == -1) {
arr[i] = -1;
}
else {
arr[i] = it;
}
}
}
public static void printArray(int[] arr)
{
foreach(int i in arr)
{
Console.Write(i.ToString() + " ");
}
Console.WriteLine();
}
}
// This code is contributed by aadityaburujwale.
JavaScript
function solve(arr) {
let s = new Set();
for (let i = arr.length - 1; i >= 0; i--) {
// traversing the array backwards
s.add(arr[i]);
// inserting the element into set
let it = -1;
// finding upper bound
for (let j of s) {
if (j > arr[i]) {
it = j;
break;
}
}
if (it == -1) {
arr[i] = -1;
} else {
arr[i] = it;
}
}
}
function printArray(arr) {
for (let i of arr) {
console.log(i + " ");
}
console.log();
}
let arr = [8, 58, 71, 18, 31, 32, 63, 92, 43, 3, 91, 93, 25, 80, 28];
printArray(arr);
solve(arr);
printArray(arr);
Output8 58 71 18 31 32 63 92 43 3 91 93 25 80 28
18 63 80 25 32 43 80 93 80 25 93 -1 28 -1 -1
Time complexity -The time complexity of the given program is O(n*logn), where n is the size of the input array.
The reason for this is that the program uses a set to store the unique elements of the input array, and for each element in the array, it performs a single insertion operation and a single upper_bound operation on the set. Both of these operations have a time complexity of O(logn) in the average case, and since they are performed n times, the overall time complexity is O(n*logn).
Space complexity-The space complexity of the program is also O(n), as it uses a set to store the unique elements of the input array. In the worst case, where all elements of the array are unique, the set will have to store n elements, leading to a space complexity of O(n).
This article is contributed by Aditya Goel.
Approach#4:using 2 loops
Algorithm
1. Initialize a new list with all -1 values to represent the elements for which there is no greater element on its right.
2. For each element in the input list:
a. Initialize a variable "min_greater" with a value of infinity.
b. Use another loop to find the minimum element in the input list that is greater than the current element.
c. If such an element is found, update the value of "min_greater" to be the minimum element found in step b.
d. If the value of "min_greater" is still infinity, it means there is no greater element on the right of the current element, so do nothing.
e. Otherwise, update the corresponding element in the new list with the value of "min_greater".
5. Return the new list.
C++
#include <iostream>
#include <vector>
#include <limits>
using namespace std;
vector<int> replace_with_least_greater(const vector<int>& arr) {
int n = arr.size();
vector<int> new_arr(n, -1);
for (int i = 0; i < n; i++) {
int min_greater = numeric_limits<int>::max();
for (int j = i + 1; j < n; j++) {
if (arr[j] > arr[i] && arr[j] < min_greater) {
min_greater = arr[j];
}
}
if (min_greater != numeric_limits<int>::max()) {
new_arr[i] = min_greater;
}
}
return new_arr;
}
int main() {
vector<int> arr = {8, 58, 71, 18, 31, 32, 63, 92, 43, 3, 91, 93, 25, 80, 28};
vector<int> result = replace_with_least_greater(arr);
// Print the result
for (int val : result) {
cout << val << " ";
}
cout << endl;
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
public class Main {
// Function to replace each element in the input list with the least greater element to its right.
public static List<Integer> replaceWithLeastGreater(List<Integer> arr) {
int n = arr.size();
List<Integer> newArr = new ArrayList<>(n);
for (int i = 0; i < n; i++) {
int minGreater = Integer.MAX_VALUE; // Initialize minGreater to a very large value.
// Iterate through elements to the right of the current element.
for (int j = i + 1; j < n; j++) {
// Check if the current element is greater than the current minimum greater element
// found so far and is smaller than any previously found minimum greater element.
if (arr.get(j) > arr.get(i) && arr.get(j) < minGreater) {
minGreater = arr.get(j); // Update minGreater with the new minimum greater element.
}
}
if (minGreater != Integer.MAX_VALUE) {
newArr.add(minGreater); // Add the minimum greater element to the new list.
} else {
newArr.add(-1); // If no greater element was found, add -1 to the new list.
}
}
return newArr; // Return the list with replaced elements.
}
public static void main(String[] args) {
// Create an input list of integers.
List<Integer> arr = List.of(8, 58, 71, 18, 31, 32, 63, 92, 43, 3, 91, 93, 25, 80, 28);
// Call the replaceWithLeastGreater function to get the result.
List<Integer> result = replaceWithLeastGreater(arr);
// Print the result
for (int val : result) {
System.out.print(val + " "); // Print each element in the result list.
}
System.out.println();
}
}
Python3
def replace_with_least_greater(arr):
n = len(arr)
new_arr = [-1] * n
for i in range(n):
min_greater = float('inf')
for j in range(i+1, n):
if arr[j] > arr[i] and arr[j] < min_greater:
min_greater = arr[j]
if min_greater != float('inf'):
new_arr[i] = min_greater
return new_arr
arr = [8, 58, 71, 18, 31, 32, 63, 92, 43, 3, 91, 93, 25, 80, 28]
print(replace_with_least_greater(arr))
C#
using System;
using System.Collections.Generic;
class Program
{
// Function to replace each element with the least greater element on its right
static List<int> ReplaceWithLeastGreater(List<int> arr)
{
int n = arr.Count;
List<int> newArr = new List<int>(n);
for (int i = 0; i < n; i++)
{
int minGreater = int.MaxValue;
for (int j = i + 1; j < n; j++)
{
// Check if the element at index j is greater than the current element
// and if it is smaller than the current minimum greater value
if (arr[j] > arr[i] && arr[j] < minGreater)
{
minGreater = arr[j];
}
}
if (minGreater != int.MaxValue)
{
// If a least greater element is found, add it to the new list
newArr.Add(minGreater);
}
else
{
// If no least greater element is found, add -1 to the new list
newArr.Add(-1);
}
}
return newArr;
}
// Main method
static void Main()
{
List<int> arr = new List<int> { 8, 58, 71, 18, 31, 32, 63, 92, 43, 3, 91, 93, 25, 80, 28 };
List<int> result = ReplaceWithLeastGreater(arr);
// Print the result
foreach (int val in result)
{
Console.Write(val + " ");
}
Console.WriteLine();
}
}
JavaScript
// Function to replace each element in the input
// list with the least greater element to its right.
function replaceWithLeastGreater(arr) {
const n = arr.length;
const newArr = [];
for (let i = 0; i < n; i++) {
let minGreater = Number.MAX_VALUE; // Initialize minGreater to a very large value.
// Iterate through elements to the right of the current element.
for (let j = i + 1; j < n; j++) {
// Check if the current element is greater than the current minimum greater element
// found so far and is smaller than any previously found minimum greater element.
if (arr[j] > arr[i] && arr[j] < minGreater) {
minGreater = arr[j]; // Update minGreater with the new minimum greater element.
}
}
if (minGreater !== Number.MAX_VALUE) {
newArr.push(minGreater); // Add the minimum greater element to the new list.
} else {
newArr.push(-1); // If no greater element was found, add -1 to the new list.
}
}
return newArr; // Return the list with replaced elements.
}
// Create an input list of integers.
const arr = [8, 58, 71, 18, 31, 32, 63, 92, 43, 3, 91, 93, 25, 80, 28];
// Call the replaceWithLeastGreater function to get the result.
const result = replaceWithLeastGreater(arr);
// Print the result
for (const val of result) {
process.stdout.write(val + ' '); // Print each element in the result list.
}
process.stdout.write('\n');
Output[18, 63, 80, 25, 32, 43, 80, 93, 80, 25, 93, -1, 28, -1, -1]
Time Complexity: O(n^2), where n is the length of the input array. This is because we use two nested loops to iterate over all pairs of elements in the input array.
Space Complexity: O(n), where n is the length of the input array. This is because we create a new list of the same length as the input array to store the output.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem