Print nodes in top view of Binary Tree | Set 2
Last Updated :
11 Jul, 2025
Top view of a binary tree is the set of nodes visible when the tree is viewed from the top. Given a binary tree, print the top view of it. The output nodes should be printed from left to right.
Note: A node x is there in output if x is the topmost node at its horizontal distance. Horizontal distance of the left child of a node x is equal to the horizontal distance of x minus 1, and that of right child is the horizontal distance of x plus 1.
Input:
1
/ \
2 3
/ \ / \
4 5 6 7
Output: Top view: 4 2 1 3 7
Input:
1
/ \
2 3
\
4
\
5
\
6
Output: Top view: 2 1 3 6
The idea is to do something similar to Vertical Order Traversal. Like Vertical Order Traversal, we need to group nodes of same horizontal distance together. We do a level order traversal so that the topmost node at a horizontal node is visited before any other node of same horizontal distance below it. A Map is used to map the horizontal distance of the node with the node's Data and vertical distance of the node.
Below is the implementation of the above approach:
C++
// C++ Program to print Top View of Binary Tree
// using hashmap and recursion
#include <bits/stdc++.h>
using namespace std;
// Node structure
struct Node {
// Data of the node
int data;
// Horizontal Distance of the node
int hd;
// Reference to left node
struct Node* left;
// Reference to right node
struct Node* right;
};
// Initialising node
struct Node* newNode(int data)
{
struct Node* node = new Node;
node->data = data;
node->hd = INT_MAX;
node->left = NULL;
node->right = NULL;
return node;
}
void printTopViewUtil(Node* root, int height,
int hd, map<int, pair<int, int> >& m)
{
// Base Case
if (root == NULL)
return;
// If the node for particular horizontal distance
// is not present in the map, add it.
// For top view, we consider the first element
// at horizontal distance in level order traversal
if (m.find(hd) == m.end()) {
m[hd] = make_pair(root->data, height);
}
else{
pair<int, int> p = (m.find(hd))->second;
if (p.second > height) {
m.erase(hd);
m[hd] = make_pair(root->data, height);
}
}
// Recur for left and right subtree
printTopViewUtil(root->left, height + 1, hd - 1, m);
printTopViewUtil(root->right, height + 1, hd + 1, m);
}
void printTopView(Node* root)
{
// Map to store horizontal distance,
// height and node's data
map<int, pair<int, int> > m;
printTopViewUtil(root, 0, 0, m);
// Print the node's value stored by printTopViewUtil()
for (map<int, pair<int, int> >::iterator it = m.begin();
it != m.end(); it++) {
pair<int, int> p = it->second;
cout << p.first << " ";
}
}
int main()
{
Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->right = newNode(4);
root->left->right->right = newNode(5);
root->left->right->right->right = newNode(6);
cout << "Top View : ";
printTopView(root);
return 0;
}
Java
// Java Program to print Top View of Binary Tree
// using hashmap and recursion
import java.util.*;
class GFG {
// Node structure
static class Node {
// Data of the node
int data;
// Reference to left node
Node left;
// Reference to right node
Node right;
};
static class pair {
int data, height;
public pair(int data, int height)
{
this.data = data;
this.height = height;
}
}
// Initialising node
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.left = null;
node.right = null;
return node;
}
static void printTopViewUtil(Node root, int height,
int hd,
Map<Integer, pair> m)
{
// Base Case
if (root == null)
return;
// If the node for particular horizontal distance
// is not present in the map, add it.
// For top view, we consider the first element
// at horizontal distance in level order traversal
if (!m.containsKey(hd)) {
m.put(hd, new pair(root.data, height));
}
else {
pair p = m.get(hd);
if (p.height >= height) {
m.put(hd, new pair(root.data, height));
}
}
// Recur for left and right subtree
printTopViewUtil(root.left, height + 1, hd - 1, m);
printTopViewUtil(root.right, height + 1, hd + 1, m);
}
static void printTopView(Node root)
{
// Map to store horizontal distance,
// height and node's data
Map<Integer, pair> m = new TreeMap<>();
printTopViewUtil(root, 0, 0, m);
// Print the node's value stored by
// printTopViewUtil()
for (Map.Entry<Integer, pair> it : m.entrySet()) {
pair p = it.getValue();
System.out.print(p.data + " ");
}
}
// Driver code
public static void main(String[] args)
{
Node root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.right = newNode(4);
root.left.right.right = newNode(5);
root.left.right.right.right = newNode(6);
System.out.print("Top View : ");
printTopView(root);
}
}
Python3
# Python3 Program to prTop View of
# Binary Tree using hash and recursion
from collections import OrderedDict
# A binary tree node
class newNode:
# A constructor to create a
# new Binary tree Node
def __init__(self, data):
self.data = data
self.left = None
self.right = None
self.hd = 2**32
def printTopViewUtil(root, height, hd, m):
# Base Case
if (root == None):
return
# If the node for particular horizontal
# distance is not present in the map, add it.
# For top view, we consider the first element
# at horizontal distance in level order traversal
if hd not in m :
m[hd] = [root.data, height]
else:
p = m[hd]
if p[1] > height:
m[hd] = [root.data, height]
# Recur for left and right subtree
printTopViewUtil(root.left,
height + 1, hd - 1, m)
printTopViewUtil(root.right,
height + 1, hd + 1, m)
def printTopView(root):
# to store horizontal distance,
# height and node's data
m = OrderedDict()
printTopViewUtil(root, 0, 0, m)
# Print the node's value stored
# by printTopViewUtil()
for i in sorted(list(m)):
p = m[i]
print(p[0], end = " ")
# Driver Code
root = newNode(1)
root.left = newNode(2)
root.right = newNode(3)
root.left.right = newNode(4)
root.left.right.right = newNode(5)
root.left.right.right.right = newNode(6)
print("Top View : ", end = "")
printTopView(root)
# This code is contributed by SHUBHAMSINGH10
C#
// C# program to print Top View of Binary
// Tree using hashmap and recursion
using System;
using System.Collections.Generic;
class GFG{
// Node structure
class Node
{
// Data of the node
public int data;
// Reference to left node
public Node left;
// Reference to right node
public Node right;
};
class pair
{
public int data, height;
public pair(int data, int height)
{
this.data = data;
this.height = height;
}
}
// Initialising node
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.left = null;
node.right = null;
return node;
}
static void printTopViewUtil(Node root, int height,
int hd,
SortedDictionary<int, pair> m)
{
// Base Case
if (root == null)
return;
// If the node for particular horizontal distance
// is not present in the map, add it.
// For top view, we consider the first element
// at horizontal distance in level order traversal
if (!m.ContainsKey(hd))
{
m[hd] = new pair(root.data, height);
}
else
{
pair p = m[hd];
if (p.height >= height)
{
m[hd] = new pair(root.data, height);
}
}
// Recur for left and right subtree
printTopViewUtil(root.left, height + 1,
hd - 1, m);
printTopViewUtil(root.right, height + 1,
hd + 1, m);
}
static void printTopView(Node root)
{
// Map to store horizontal distance,
// height and node's data
SortedDictionary<int,
pair> m = new SortedDictionary<int,
pair>();
printTopViewUtil(root, 0, 0, m);
// Print the node's value stored by
// printTopViewUtil()
foreach(var it in m.Values)
{
Console.Write(it.data + " ");
}
}
// Driver code
public static void Main(string[] args)
{
Node root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.right = newNode(4);
root.left.right.right = newNode(5);
root.left.right.right.right = newNode(6);
Console.Write("Top View : ");
printTopView(root);
}
}
// This code is contributed by rutvik_56
JavaScript
<script>
// JavaScript program to print Top View of Binary
// Tree using hashmap and recursion
// Node structure
class Node
{
constructor()
{
// Data of the node
this.data = 0;
// Reference to left node
this.left = null;
// Reference to right node
this.right = null;
}
};
class pair
{
constructor(data, height)
{
this.data = data;
this.height = height;
}
}
// Initialising node
function newNode(data)
{
var node = new Node();
node.data = data;
node.left = null;
node.right = null;
return node;
}
function printTopViewUtil(root, height, hd, m)
{
// Base Case
if (root == null)
return;
// If the node for particular horizontal distance
// is not present in the map, add it.
// For top view, we consider the first element
// at horizontal distance in level order traversal
if (!m.has(hd))
{
m.set(hd, new pair(root.data, height));
}
else
{
var p = m.get(hd);
if (p.height >= height)
{
m.set(hd, new pair(root.data, height));
}
}
// Recur for left and right subtree
printTopViewUtil(root.left, height + 1,
hd - 1, m);
printTopViewUtil(root.right, height + 1,
hd + 1, m);
}
function printTopView(root)
{
// Map to store horizontal distance,
// height and node's data
var m = new Map();
printTopViewUtil(root, 0, 0, m);
// Print the node's value stored by
// printTopViewUtil()
for(var it of [...m].sort())
{
document.write(it[1].data + " ");
}
}
// Driver code
var root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.right = newNode(4);
root.left.right.right = newNode(5);
root.left.right.right.right = newNode(6);
document.write("Top View : ");
printTopView(root);
</script>
Complexity Analysis:
- Time complexity: O(n) where n is number of nodes of binary tree
- Auxiliary space: O(n) for call stack
Approach#2: Using deque
We use a level order traversal technique to traverse the tree and maintain a dictionary to store the horizontal distance of each node from the root node. We keep adding nodes to the queue along with their horizontal distance from the root node. Then, we traverse the dictionary and print the values of the nodes with the minimum horizontal distance from the root node.
Algorithm
1. Create an empty dictionary to store the horizontal distance of each node from the root node.
2. Create a queue and enqueue the root node along with its horizontal distance, which is zero.
3. Traverse the tree using a level order traversal technique:
a. Dequeue a node and its horizontal distance from the queue.
b. If the horizontal distance is not present in the dictionary, add the node's value to the dictionary with its horizontal distance.
c. Enqueue the left child of the dequeued node with its horizontal distance decreased by 1.
d. Enqueue the right child of the dequeued node with its horizontal distance increased by 1.
4. Traverse the dictionary and print the values of the nodes with the minimum horizontal distance from the root node.
C++
#include <iostream>
#include <map>
#include <deque>
// Definition of a binary tree node
class Node {
public:
int val;
Node* left;
Node* right;
Node(int value) : val(value), left(nullptr), right(nullptr) {}
};
// Function to print the top view of a binary tree
void topView(Node* root) {
// Map to store horizontal distance and corresponding node's value
std::map<int, int> hdMap;
// Queue for level order traversal with horizontal distance
std::deque<std::pair<Node*, int>> q;
// Enqueue the root with horizontal distance 0
q.push_back(std::make_pair(root, 0));
// Level order traversal to find the top view
while (!q.empty()) {
Node* node = q.front().first;
int hd = q.front().second;
q.pop_front();
// If the horizontal distance is not in the map, add it with the node's value
if (hdMap.find(hd) == hdMap.end()) {
hdMap[hd] = node->val;
}
// Enqueue the left child with a decreased horizontal distance
if (node->left) {
q.push_back(std::make_pair(node->left, hd - 1));
}
// Enqueue the right child with an increased horizontal distance
if (node->right) {
q.push_back(std::make_pair(node->right, hd + 1));
}
}
// Print the top view nodes in order of horizontal distance
for (auto it = hdMap.begin(); it != hdMap.end(); ++it) {
std::cout << it->second << " ";
}
}
int main() {
// Create a sample binary tree
Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->left = new Node(6);
root->right->right = new Node(7);
// Print the top view of the binary tree
std::cout << "Top view: ";
topView(root);
return 0;
}
Java
import java.util.*;
class Node {
int val;
Node left;
Node right;
public Node(int val) {
this.val = val;
this.left = null;
this.right = null;
}
}
public class Main {
public static void topView(Node root) {
if (root == null) {
return;
}
Map<Integer, Integer> hdMap = new TreeMap<>();
Queue<Node> queue = new LinkedList<>();
Queue<Integer> hdQueue = new LinkedList<>();
queue.offer(root);
hdQueue.offer(0);
while (!queue.isEmpty()) {
Node currNode = queue.poll();
int currHd = hdQueue.poll();
if (!hdMap.containsKey(currHd)) {
hdMap.put(currHd, currNode.val);
}
if (currNode.left != null) {
queue.offer(currNode.left);
hdQueue.offer(currHd - 1);
}
if (currNode.right != null) {
queue.offer(currNode.right);
hdQueue.offer(currHd + 1);
}
}
for (int hd : hdMap.keySet()) {
System.out.print(hdMap.get(hd) + " ");
}
}
public static void main(String[] args) {
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
System.out.print("Top view: ");
topView(root);
}
}
Python3
from collections import deque
class Node:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
def top_view(root):
hd_dict = {}
q = deque([(root, 0)])
while q:
node, hd = q.popleft()
if hd not in hd_dict:
hd_dict[hd] = node.val
if node.left:
q.append((node.left, hd-1))
if node.right:
q.append((node.right, hd+1))
for hd in sorted(hd_dict.keys()):
print(hd_dict[hd], end=' ')
# Example usage
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.left = Node(6)
root.right.right = Node(7)
print("Top view: ", end='')
top_view(root)
C#
using System;
using System.Collections.Generic;
using System.Linq; // Adding System.Linq for LINQ methods
public class Node
{
public int val;
public Node left;
public Node right;
public Node(int val)
{
this.val = val;
left = null;
right = null;
}
}
public class BinaryTree
{
public static void TopView(Node root)
{
Dictionary<int, int> hdDict = new Dictionary<int, int>();
Queue<(Node, int)> queue = new Queue<(Node, int)>();
queue.Enqueue((root, 0));
while (queue.Count > 0)
{
(Node node, int hd) = queue.Dequeue();
if (!hdDict.ContainsKey(hd))
{
hdDict[hd] = node.val;
}
if (node.left != null)
{
queue.Enqueue((node.left, hd - 1));
}
if (node.right != null)
{
queue.Enqueue((node.right, hd + 1));
}
}
foreach (int hd in hdDict.Keys.OrderBy(key => key)) // Using OrderBy from System.Linq
{
Console.Write(hdDict[hd] + " ");
}
}
}
class Program
{
static void Main(string[] args)
{
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
Console.Write("Top view: ");
BinaryTree.TopView(root);
}
}
JavaScript
// Node class definition
class Node {
constructor(val) {
this.val = val;
this.left = null;
this.right = null;
}
}
// Function to find and print the top view of a binary tree
function topView(root) {
const hdMap = {}; // Dictionary to store nodes at each horizontal distance
const queue = [{ node: root, hd: 0 }]; // Queue for level order traversal
while (queue.length !== 0) {
const { node, hd } = queue.shift();
if (!(hd in hdMap)) {
hdMap[hd] = node.val;
}
if (node.left !== null) {
queue.push({ node: node.left, hd: hd - 1 });
}
if (node.right !== null) {
queue.push({ node: node.right, hd: hd + 1 });
}
}
// Print the top view nodes
Object.keys(hdMap)
.sort((a, b) => a - b) // Sorting keys to print nodes in left-to-right order
.forEach(hd => process.stdout.write(hdMap[hd] + ' '));
}
// Example usage
const root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
process.stdout.write("Top view: ");
topView(root);
OutputTop view: 4 2 1 3 7
Time Complexity: O(N), where N is the number of nodes in the binary tree, as we need to visit each node once.
Space Complexity: O(N), where N is the maximum number of nodes at any level in the binary tree, as we need to store the horizontal distance of each node from the root node. Additionally, we need to store the nodes in the queue, which can have at most N nodes in the worst case when the tree is a complete binary tree.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem