// C / C++ program for Prim's MST for adjacency list
// representation of graph
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
// A structure to represent a node in adjacency list
struct AdjListNode {
int dest;
int weight;
struct AdjListNode* next;
};
// A structure to represent an adjacency list
struct AdjList {
struct AdjListNode*
head; // pointer to head node of list
};
// A structure to represent a graph. A graph is an array of
// adjacency lists. Size of array will be V (number of
// vertices in graph)
struct Graph {
int V;
struct AdjList* array;
};
// A utility function to create a new adjacency list node
struct AdjListNode* newAdjListNode(int dest, int weight)
{
struct AdjListNode* newNode
= (struct AdjListNode*)malloc(
sizeof(struct AdjListNode));
newNode->dest = dest;
newNode->weight = weight;
newNode->next = NULL;
return newNode;
}
// A utility function that creates a graph of V vertices
struct Graph* createGraph(int V)
{
struct Graph* graph
= (struct Graph*)malloc(sizeof(struct Graph));
graph->V = V;
// Create an array of adjacency lists. Size of array
// will be V
graph->array = (struct AdjList*)malloc(
V * sizeof(struct AdjList));
// Initialize each adjacency list as empty by making
// head as NULL
for (int i = 0; i < V; ++i)
graph->array[i].head = NULL;
return graph;
}
// Adds an edge to an undirected graph
void addEdge(struct Graph* graph, int src, int dest,
int weight)
{
// Add an edge from src to dest. A new node is added to
// the adjacency list of src. The node is added at the
// beginning
struct AdjListNode* newNode
= newAdjListNode(dest, weight);
newNode->next = graph->array[src].head;
graph->array[src].head = newNode;
// Since graph is undirected, add an edge from dest to
// src also
newNode = newAdjListNode(src, weight);
newNode->next = graph->array[dest].head;
graph->array[dest].head = newNode;
}
// Structure to represent a min heap node
struct MinHeapNode {
int v;
int key;
};
// Structure to represent a min heap
struct MinHeap {
int size; // Number of heap nodes present currently
int capacity; // Capacity of min heap
int* pos; // This is needed for decreaseKey()
struct MinHeapNode** array;
};
// A utility function to create a new Min Heap Node
struct MinHeapNode* newMinHeapNode(int v, int key)
{
struct MinHeapNode* minHeapNode
= (struct MinHeapNode*)malloc(
sizeof(struct MinHeapNode));
minHeapNode->v = v;
minHeapNode->key = key;
return minHeapNode;
}
// A utility function to create a Min Heap
struct MinHeap* createMinHeap(int capacity)
{
struct MinHeap* minHeap
= (struct MinHeap*)malloc(sizeof(struct MinHeap));
minHeap->pos = (int*)malloc(capacity * sizeof(int));
minHeap->size = 0;
minHeap->capacity = capacity;
minHeap->array = (struct MinHeapNode**)malloc(
capacity * sizeof(struct MinHeapNode*));
return minHeap;
}
// A utility function to swap two nodes of min heap. Needed
// for min heapify
void swapMinHeapNode(struct MinHeapNode** a,
struct MinHeapNode** b)
{
struct MinHeapNode* t = *a;
*a = *b;
*b = t;
}
// A standard function to heapify at given idx
// This function also updates position of nodes when they
// are swapped. Position is needed for decreaseKey()
void minHeapify(struct MinHeap* minHeap, int idx)
{
int smallest, left, right;
smallest = idx;
left = 2 * idx + 1;
right = 2 * idx + 2;
if (left < minHeap->size
&& minHeap->array[left]->key
< minHeap->array[smallest]->key)
smallest = left;
if (right < minHeap->size
&& minHeap->array[right]->key
< minHeap->array[smallest]->key)
smallest = right;
if (smallest != idx) {
// The nodes to be swapped in min heap
MinHeapNode* smallestNode
= minHeap->array[smallest];
MinHeapNode* idxNode = minHeap->array[idx];
// Swap positions
minHeap->pos[smallestNode->v] = idx;
minHeap->pos[idxNode->v] = smallest;
// Swap nodes
swapMinHeapNode(&minHeap->array[smallest],
&minHeap->array[idx]);
minHeapify(minHeap, smallest);
}
}
// A utility function to check if the given minHeap is empty
// or not
int isEmpty(struct MinHeap* minHeap)
{
return minHeap->size == 0;
}
// Standard function to extract minimum node from heap
struct MinHeapNode* extractMin(struct MinHeap* minHeap)
{
if (isEmpty(minHeap))
return NULL;
// Store the root node
struct MinHeapNode* root = minHeap->array[0];
// Replace root node with last node
struct MinHeapNode* lastNode
= minHeap->array[minHeap->size - 1];
minHeap->array[0] = lastNode;
// Update position of last node
minHeap->pos[root->v] = minHeap->size - 1;
minHeap->pos[lastNode->v] = 0;
// Reduce heap size and heapify root
--minHeap->size;
minHeapify(minHeap, 0);
return root;
}
// Function to decrease key value of a given vertex v. This
// function uses pos[] of min heap to get the current index
// of node in min heap
void decreaseKey(struct MinHeap* minHeap, int v, int key)
{
// Get the index of v in heap array
int i = minHeap->pos[v];
// Get the node and update its key value
minHeap->array[i]->key = key;
// Travel up while the complete tree is not heapified.
// This is a O(Logn) loop
while (i
&& minHeap->array[i]->key
< minHeap->array[(i - 1) / 2]->key) {
// Swap this node with its parent
minHeap->pos[minHeap->array[i]->v] = (i - 1) / 2;
minHeap->pos[minHeap->array[(i - 1) / 2]->v] = i;
swapMinHeapNode(&minHeap->array[i],
&minHeap->array[(i - 1) / 2]);
// move to parent index
i = (i - 1) / 2;
}
}
// A utility function to check if a given vertex
// 'v' is in min heap or not
bool isInMinHeap(struct MinHeap* minHeap, int v)
{
if (minHeap->pos[v] < minHeap->size)
return true;
return false;
}
// A utility function used to print the constructed MST
void printArr(int arr[], int n)
{
for (int i = 1; i < n; ++i)
printf("%d - %d\n", arr[i], i);
}
// The main function that constructs Minimum Spanning Tree
// (MST) using Prim's algorithm
void PrimMST(struct Graph* graph)
{
int V = graph->V; // Get the number of vertices in graph
int parent[V]; // Array to store constructed MST
int key[V]; // Key values used to pick minimum weight
// edge in cut
// minHeap represents set E
struct MinHeap* minHeap = createMinHeap(V);
// Initialize min heap with all vertices. Key value of
// all vertices (except 0th vertex) is initially
// infinite
for (int v = 1; v < V; ++v) {
parent[v] = -1;
key[v] = INT_MAX;
minHeap->array[v] = newMinHeapNode(v, key[v]);
minHeap->pos[v] = v;
}
// Make key value of 0th vertex as 0 so that it
// is extracted first
key[0] = 0;
minHeap->array[0] = newMinHeapNode(0, key[0]);
minHeap->pos[0] = 0;
// Initially size of min heap is equal to V
minHeap->size = V;
// In the following loop, min heap contains all nodes
// not yet added to MST.
while (!isEmpty(minHeap)) {
// Extract the vertex with minimum key value
struct MinHeapNode* minHeapNode
= extractMin(minHeap);
int u
= minHeapNode
->v; // Store the extracted vertex number
// Traverse through all adjacent vertices of u (the
// extracted vertex) and update their key values
struct AdjListNode* pCrawl = graph->array[u].head;
while (pCrawl != NULL) {
int v = pCrawl->dest;
// If v is not yet included in MST and weight of
// u-v is less than key value of v, then update
// key value and parent of v
if (isInMinHeap(minHeap, v)
&& pCrawl->weight < key[v]) {
key[v] = pCrawl->weight;
parent[v] = u;
decreaseKey(minHeap, v, key[v]);
}
pCrawl = pCrawl->next;
}
}
// print edges of MST
printArr(parent, V);
}
// Driver program to test above functions
int main()
{
// Let us create the graph given in above figure
int V = 9;
struct Graph* graph = createGraph(V);
addEdge(graph, 0, 1, 4);
addEdge(graph, 0, 7, 8);
addEdge(graph, 1, 2, 8);
addEdge(graph, 1, 7, 11);
addEdge(graph, 2, 3, 7);
addEdge(graph, 2, 8, 2);
addEdge(graph, 2, 5, 4);
addEdge(graph, 3, 4, 9);
addEdge(graph, 3, 5, 14);
addEdge(graph, 4, 5, 10);
addEdge(graph, 5, 6, 2);
addEdge(graph, 6, 7, 1);
addEdge(graph, 6, 8, 6);
addEdge(graph, 7, 8, 7);
PrimMST(graph);
return 0;
}