Non-Repeating Elements of a given array using Multithreaded program
Last Updated :
23 Jul, 2025
Given an array arr[] of size N and an integer T representing the count of threads, the task is to find all non-repeating array elements using multithreading.
Examples:
Input: arr[] = { 1, 0, 5, 5, 2}, T = 3
Output: 0 1 2
Explanation:
The frequency of 0 in the array arr[] is 1.
The frequency of 1 in the array arr[] is 1.
The frequency of 2 in the array arr[] is 1.
Therefore, the required output is 0 1 2
Input: arr[] = { 1, 1, 5, 5, 2, 4 }, T = 3
Output: 2 4
Explanation:
The frequency of 2 in the array arr[] is 1.
The frequency of 4 in the array arr[] is 1.
Therefore, the required output is 2 4
Approach: The idea is to use the pthread library available in C++ to create multiple threads for concurrent process flow and perform multiple operations( pthread create, pthread join , lock, etc) in multithreaded program. Follow the steps below to solve the problem:
- Divide the array into T subarrays, such that each subarray of size N / T will be executed in a single thread.
- Initialize a Map, say mp, to store the frequencies of each array element.
- Create a pthread_mutex_lock, say lock1, to ensure that all threads do not trip over each other and corrupt the Map container.
- Define a function func() for executing the body of a thread. This function is often called the kernel of the thread and is provided during thread creation.
- Lock the current thread using pthread_mutex_lock() so that it does not overlap with other threads
- Traverse through the given range as an argument to the function func() in the array arr[] and increment the frequency of the array element which is encountered.
- Release the current thread using the function pthread_mutex_unlock().
- Initialize an array, say thread[], of type pthread_t for storing the threads.
- Iterate over the range [0, T] and create a thread by calling pthread_create() function and store it in the thread[i]
- While each thread performs their individual tasks, the main() function will need to wait till each of the threads finish their work.
- Use pthread_join() function for waiting till each thread finishes executing function func()
- Iterate over the range [0, T] and call pthread_create() function for each thread[i]
- Finally, traverse the map mp and print the element occurring only once.
Below is the implementation of the above approach:
C++
// C++ program to implement
// the above approach
#include <bits/stdc++.h>
#include <pthread.h>
using namespace std;
// Structure of subarray
// of the array
struct range_info {
// Stores start index
// of the subarray
int start;
// Stores end index
// of the subarray
int end;
// Stores pointer to the
// first array element
int* a;
};
// Declaring map, and mutex for
// thread exclusion(lock)
map<int, int> mp;
pthread_mutex_t lock1;
// Function performed by every thread to
// count the frequency of array elements
// in current subarray
void* func(void* arg)
{
// Taking a lock so that threads
// do not overlap each other
pthread_mutex_lock(&lock1);
// Initialize range_info
// for each thread
struct range_info* rptr
= (struct range_info*)arg;
// Thread is going through the array
// to check and update the map
for (int i = rptr->start;
i <= rptr->end; i++) {
// Stores iterator to the map
map<int, int>::iterator it;
// Update it
it = mp.find(rptr->a[i]);
// If rptr->a[i] not found
// in map mp
if (it == mp.end()) {
// Insert rptr->a[i] with
// frequency 1
mp.insert({ rptr->a[i], 1 });
}
else {
// Update frequency of
// current element
it->second++;
}
}
// Thread releases the lock
pthread_mutex_unlock(&lock1);
return NULL;
}
// Function to find the unique
// numbers in the array
void numbers_occuring_once(int arr[],
int N, int T)
{
// Stores all threads
pthread_t threads[T];
// Stores start index of
// first thread
int spos = 0;
// Stores last index
// of the first thread
int epos = spos + (N / T) - 1;
// Traverse each thread
for (int i = 0; i < T; i++) {
// Initialize range_info for
// current thread
struct range_info* rptr
= (struct range_info*)malloc(
sizeof(struct range_info));
// Update start index of
// current subarray
rptr->start = spos;
// Stores end index of
// current subarray
rptr->end = epos;
// Update pointer to the first
// element of the array
rptr->a = arr;
// creating each thread with
// appropriate parameters
int a
= pthread_create(&threads[i], NULL,
func, (void*)(rptr));
// updating the parameters
// for the next thread
spos = epos + 1;
epos = spos + (N / T) - 1;
if (i == T - 2) {
epos = N - 1;
}
}
// Waiting for threads to finish
for (int i = 0; i < T; i++) {
int rc
= pthread_join(threads[i], NULL);
}
// Traverse the map
for (auto it: mp) {
// If frequency of current
// element is 1
if (it.second == 1) {
// Print the element
cout << it.first << " ";
}
}
}
// Drivers Code
int main()
{
// initializing the mutex lock
pthread_mutex_init(&lock1, NULL);
int T = 3;
int arr[] = { 1, 0, 5, 5, 2, 6 };
int N = sizeof(arr) / sizeof(arr[0]);
numbers_occuring_once(arr, N, T);
}
Java
import java.util.HashMap;
import java.util.Map;
public class Main {
// Structure of subarray of the array
static class RangeInfo {
// Stores start index of the subarray
int start;
// Stores end index of the subarray
int end;
// Stores pointer to the first array element
int[] a;
RangeInfo(int start, int end, int[] a)
{
this.start = start;
this.end = end;
this.a = a;
}
}
// Declaring map for thread exclusion(lock)
static Map<Integer, Integer> mp = new HashMap<>();
// Function performed by every thread to
// count the frequency of array elements
// in current subarray
static void func(RangeInfo rptr)
{
// Initialize range_info for each thread
// Thread is going through the array
// to check and update the map
for (int i = rptr.start; i <= rptr.end; i++) {
// Stores value of the current element
int curr = rptr.a[i];
// Synchronize access to the map
synchronized (mp)
{
// Stores the frequency of the current
// element
Integer freq = mp.get(curr);
// If curr not found in map mp
if (freq == null) {
// Insert curr with frequency 1
mp.put(curr, 1);
}
else {
// Update frequency of current element
mp.put(curr, freq + 1);
}
}
}
}
// Function to find the unique numbers in the array
static void numbersOccurringOnce(int[] arr, int n,
int t)
{
// Stores all threads
Thread[] threads = new Thread[t];
// Stores start index of first thread
final int spos = 0;
// Stores last index of the first thread
final int epos = spos + (n / t) - 1;
// Traverse each thread
for (int i = 0; i < t; i++) {
// Update start index of current subarray
final int start = spos + (n / t) * i;
// Stores end index of current subarray
final int end
= i == t - 1 ? n - 1
: spos + (n / t) * (i + 1) - 1;
// Initialize range_info for current thread
RangeInfo rptr = new RangeInfo(start, end, arr);
// creating each thread with appropriate
// parameters
threads[i] = new Thread(() -> func(rptr));
}
// Starting all threads
for (int i = 0; i < t; i++) {
threads[i].start();
}
// Waiting for threads to finish
for (int i = 0; i < t; i++) {
try {
threads[i].join();
}
catch (InterruptedException e) {
e.printStackTrace();
}
}
// Traverse the map
for (Map.Entry<Integer, Integer> it :
mp.entrySet()) {
// If frequency of current element is 1
if (it.getValue() == 1) {
// Print the element
System.out.print(it.getKey() + " ");
}
}
}
// Driver's Code
public static void main(String[] args)
throws InterruptedException
{
// initializing the mutex lock
Object lock1 = new Object();
int T = 3;
int[] arr = { 1, 0, 5, 5, 2, 6 };
int N = arr.length;
numbersOccurringOnce(arr, N, T);
}
}
Python3
import threading
# Structure of subarray of the array
class RangeInfo:
# Stores start index of the subarray
def __init__(self, start, end, a):
self.start = start
self.end = end
self.a = a
# Declaring map for thread exclusion(lock)
mp = {}
# Function performed by every thread to
# count the frequency of array elements
# in current subarray
def func(rptr):
# Thread is going through the array
# to check and update the map
for i in range(rptr.start, rptr.end + 1):
# Stores value of the current element
curr = rptr.a[i]
# Synchronize access to the map
with threading.Lock():
# Stores the frequency of the current
# element
freq = mp.get(curr, 0)
# If curr not found in map mp
if freq == 0:
# Insert curr with frequency 1
mp[curr] = 1
else:
# Update frequency of current element
mp[curr] = freq + 1
# Function to find the unique numbers in the array
def numbersOccurringOnce(arr, n, t):
# Stores all threads
threads = []
# Stores start index of first thread
spos = 0
# Stores last index of the first thread
epos = spos + (n // t) - 1
# Traverse each thread
for i in range(t):
# Update start index of current subarray
start = spos + (n // t) * i
# Stores end index of current subarray
end = n - 1 if i == t - 1 else spos + (n // t) * (i + 1) - 1
# Initialize range_info for current thread
rptr = RangeInfo(start, end, arr)
# creating each thread with appropriate
# parameters
threads.append(threading.Thread(target=func, args=(rptr,)))
# Starting all threads
for thread in threads:
thread.start()
# Waiting for threads to finish
for thread in threads:
thread.join()
# Traverse the map
for key, value in mp.items():
# If frequency of current element is 1
if value == 1:
# Print the element
print(key, end=" ")
# Drivers Code
if __name__ == "__main__":
T = 3
arr = [1, 0, 5, 5, 2, 6]
N = len(arr)
numbersOccurringOnce(arr, N, T)
C#
using System;
using System.Collections.Generic;
using System.Threading;
// Structure of subarray of the array
class RangeInfo {
// Stores start index of the subarray
public int start;
// Stores end index of the subarray
public int end;
// Stores pointer to the first array element
public int[] a;
public RangeInfo(int start, int end, int[] a)
{
this.start = start;
this.end = end;
this.a = a;
}
}
public class GFG {
// Declaring map for thread exclusion(lock)
static Dictionary<int, int> mp
= new Dictionary<int, int>();
// Function performed by every thread to
// count the frequency of array elements
// in current subarray
static void func(RangeInfo rptr)
{
// Thread is going through the array
// to check and update the map
for (int i = rptr.start; i <= rptr.end; i++) {
// Stores value of the current element
int curr = rptr.a[i];
// Synchronize access to the map
lock(mp)
{
// Stores the frequency of the current
// element
int freq;
mp.TryGetValue(curr, out freq);
// If curr not found in map mp
if (freq == 0) {
// Insert curr with frequency 1
mp.Add(curr, 1);
}
else {
// Update frequency of current element
mp[curr] = freq + 1;
}
}
}
}
// Function to find the unique numbers in the array
static void numbersOccurringOnce(int[] arr, int n,
int t)
{
// Stores all threads
Thread[] threads = new Thread[t];
// Stores start index of first thread
int spos = 0;
// Stores last index of the first thread
int epos = spos + (n / t) - 1;
// Traverse each thread
for (int i = 0; i < t; i++) {
// Update start index of current subarray
int start = spos + (n / t) * i;
// Stores end index of current subarray
int end = i == t - 1
? n - 1
: spos + (n / t) * (i + 1) - 1;
// Initialize range_info for current thread
RangeInfo rptr = new RangeInfo(start, end, arr);
// creating each thread with appropriate
// parameters
threads[i] = new Thread(() => func(rptr));
}
// Starting all threads
for (int i = 0; i < t; i++) {
threads[i].Start();
}
// Waiting for threads to finish
for (int i = 0; i < t; i++) {
threads[i].Join();
}
// Traverse the map
foreach(KeyValuePair<int, int> entry in mp)
{
// If frequency of current element is 1
if (entry.Value == 1) {
// Print the element
Console.Write(entry.Key + " ");
}
}
}
// Driver's Code
public static void Main(string[] args)
{
int T = 3;
int[] arr = { 1, 0, 5, 5, 2, 6 };
int N = arr.Length;
numbersOccurringOnce(arr, N, T);
}
}
JavaScript
// Structure of subarray of the array
class RangeInfo {
// Stores start index of the subarray
constructor(start, end, a) {
this.start = start;
this.end = end;
this.a = a;
}
}
// Declaring map for thread exclusion(lock)
let mp = {};
// Function performed by every thread to
// count the frequency of array elements
// in the current subarray
async function func(rptr) {
// Thread is going through the array
// to check and update the map
for (let i = rptr.start; i <= rptr.end; i++) {
// Stores the value of the current element
let curr = rptr.a[i];
// Synchronize access to the map
// Note: JavaScript does not have a direct equivalent of Python's threading.Lock(),
// so we'll use a simple object for synchronization
let lock = {};
lock.acquire = function () {};
lock.release = function () {};
lock.acquire();
// Stores the frequency of the current
// element
let freq = mp[curr] || 0;
// If curr not found in map mp
if (freq === 0) {
// Insert curr with frequency 1
mp[curr] = 1;
} else {
// Update frequency of the current element
mp[curr] = freq + 1;
}
lock.release();
}
}
// Function to find the unique numbers in the array
async function numbersOccurringOnce(arr, n, t) {
// Stores all Promises
let promises = [];
// Stores start index of the first thread
let spos = 0;
// Stores the last index of the first thread
let epos = spos + Math.floor(n / t) - 1;
// Traverse each thread
for (let i = 0; i < t; i++) {
// Update the start index of the current subarray
let start = spos + Math.floor(n / t) * i;
// Stores the end index of the current subarray
let end = i === t - 1 ? n - 1 : spos + Math.floor(n / t) * (i + 1) - 1;
// Initialize range_info for the current thread
let rptr = new RangeInfo(start, end, arr);
// Creating each Promise with appropriate
// parameters
promises.push(func(rptr));
}
// Wait for all Promises to resolve
await Promise.all(promises);
// Traverse the map
for (let [key, value] of Object.entries(mp)) {
// If the frequency of the current element is 1
if (value === 1) {
// Print the element
console.log(key, " ");
}
}
}
// Drivers Code
let T = 3;
let arr = [1, 0, 5, 5, 2, 6];
let N = arr.length;
numbersOccurringOnce(arr, N, T);
// This code is contributed by Kanchan Agarwal
Time Complexity: O(N * log(N))
Auxiliary Space: O(N)
Note: It is recommended to execute the program in a Linux based system using the following command:
g++ -pthread program_name.cpp
Similar Reads
Find any one of the multiple repeating elements in read only array Given a read-only array of size ( n+1 ), find one of the multiple repeating elements in the array where the array contains integers only between 1 and n. A read-only array means that the contents of the array canât be modified.Examples: Input : n = 5 arr[] = {1, 1, 2, 3, 5, 4} Output : One of the nu
15 min read
Find the only non-repeating element in a given array Given an array A[] consisting of N (1 ? N ? 105) positive integers, the task is to find the only array element with a single occurrence. Note: It is guaranteed that only one such element exists in the array. Examples: Input: A[] = {1, 1, 2, 3, 3}Output: 2Explanation: Distinct array elements are {1,
10 min read
Find the only repeating element in a sorted array of size n Given a sorted array of n elements containing elements in range from 1 to n-1 i.e. one element occurs twice, the task is to find the repeating element in an array. Examples : Input : arr[] = { 1, 2 , 3 , 4 , 4}Output : 4Input : arr[] = { 1 , 1 , 2 , 3 , 4}Output : 1Brute Force: Traverse the input ar
8 min read
Find the first repeating element in an array of integers Given an array of integers arr[], The task is to find the index of first repeating element in it i.e. the element that occurs more than once and whose index of the first occurrence is the smallest. Examples: Input: arr[] = {10, 5, 3, 4, 3, 5, 6}Output: 5 Explanation: 5 is the first element that repe
9 min read
Find the first repeating element in an array of integers Given an array of integers arr[], The task is to find the index of first repeating element in it i.e. the element that occurs more than once and whose index of the first occurrence is the smallest. Examples: Input: arr[] = {10, 5, 3, 4, 3, 5, 6}Output: 5 Explanation: 5 is the first element that repe
9 min read
Sum of all elements repeating 'k' times in an array Given an array, we have to find the sum of all the elements repeating k times in an array. We need to consider every repeating element just once in the sum. Examples: Input : arr[] = {2, 3, 9, 9} k = 1 Output : 5 2 + 3 = 5 Input : arr[] = {9, 8, 8, 8, 10, 4} k = 3 Output : 8 One simple solution is t
8 min read