Median of two Sorted Arrays of Different Sizes
Last Updated :
23 Jul, 2025
Given two sorted arrays, a[] and b[], the task is to find the median of these sorted arrays. Assume that the two sorted arrays are merged and then median is selected from the combined array.
This is an extension of Median of two sorted arrays of equal size problem. Here we handle arrays of unequal size also.
Examples:
Input: a[] = [-5, 3, 6, 12, 15], b[] = [-12, -10, -6, -3, 4, 10]
Output: 3
Explanation: The merged array is [-12, -10, -6, -5 , -3, 3, 4, 6, 10, 12, 15]. So the median of the merged array is 3.
Input: a[] = [1, 12, 15, 26, 38], b[] = [2, 13, 17, 30, 45, 60]
Output: The median is 17.
Explanation : The merged array is [1, 2, 12, 13, 15, 17, 26, 30, 38, 45, 60]. So the median of the merged array is 17.
Input: a[] = [], b[] = [2, 4, 5, 6]
Output: The median is 4.5
Explanation: The merged array is [2, 4, 5, 6]. The total number of elements are even, so there are two middle elements. Take the average between the two: (4 + 5) / 2 = 4.5
[Naive Approach] Using Sorting - O((n + m) * log (n + m)) Time and O(n + m) Space
The idea is to concatenate both the arrays into a new array, sort the new array and return the middle of the new sorted array.
Illustration:
a[] = [ -5, 3, 6, 12, 15 ], b[] = [ -12, -10, -6, -3, 4, 10 ]
- After concatenating them in a third array: c[] = [ -5, 3, 6, 12, 15, -12, -10, -6, -3, 4, 10]
- Sort c[] = [ -12, -10, -6, -5, -3, 3, 4, 6, 10, 12, 15 ]
- As the length of c[] is odd, so the median is the middle element = 3
C++
// C++ Code to find Median of two Sorted Arrays of
// Different Sizes using Sorting
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
double medianOf2(vector<int>& a, vector<int>& b) {
// Merge both the arrays
vector<int> c(a.begin(), a.end());
c.insert(c.end(), b.begin(), b.end());
// Sort the concatenated array
sort(c.begin(), c.end());
int len = c.size();
// If length of array is even
if (len % 2 == 0)
return (c[len / 2] + c[len / 2 - 1]) / 2.0;
// If length of array is odd
else
return c[len / 2];
}
int main() {
vector<int> a = { -5, 3, 6, 12, 15 };
vector<int> b = { -12, -10, -6, -3, 4, 10 };
cout << medianOf2(a, b) << endl;
return 0;
}
C
// C Code to find Median of two Sorted Arrays of
// Different Sizes using Sorting
#include <stdio.h>
// Function to compare two integers for qsort
int compare(const void *a, const void *b) {
return (*(int*)a - *(int*)b);
}
double medianOf2(int a[], int n, int b[], int m) {
// Calculate the total size of the concatenated array
int len = n + m;
int c[len];
// Concatenate a and b into c
for (int i = 0; i < n; ++i)
c[i] = a[i];
for (int i = 0; i < m; ++i)
c[n + i] = b[i];
// Sort the concatenated array
qsort(c, len, sizeof(int), compare);
// Calculate and return the median
int mid = len / 2;
// If length of array is even
if (len % 2 == 0)
return (c[mid] + c[mid - 1]) / 2.0;
// If length of array is odd
else
return c[mid];
}
int main() {
int a[] = { -5, 3, 6, 12, 15 };
int b[] = { -12, -10, -6, -3, 4, 10 };
int n = sizeof(a) / sizeof(a[0]);
int m = sizeof(b) / sizeof(b[0]);
printf("%f\n", medianOf2(a, n, b, m));
return 0;
}
Java
// Java Code to find Median of two Sorted Arrays of
// Different Sizes using Sorting
import java.util.*;
class GfG {
static double medianOf2(int[] a, int[] b) {
// Merge both the arrays
int[] c = new int[a.length + b.length];
System.arraycopy(a, 0, c, 0, a.length);
System.arraycopy(b, 0, c, a.length, b.length);
// Sort the concatenated array
Arrays.sort(c);
int len = c.length;
// If length of array is even
if (len % 2 == 0)
return (c[len / 2] + c[len / 2 - 1]) / 2.0;
// If length of array is odd
else
return c[len / 2];
}
public static void main(String[] args) {
int[] a = { -5, 3, 6, 12, 15 };
int[] b = { -12, -10, -6, -3, 4, 10 };
System.out.println(medianOf2(a, b));
}
}
Python
# Python Code to find Median of two Sorted Arrays of
# Different Sizes using Sorting
def medianOf2(a, b):
# Merge both the arrays
c = a + b
# Sort the concatenated array
c.sort()
len_c = len(c)
# If length of array is even
if len_c % 2 == 0:
return (c[len_c // 2] + c[len_c // 2 - 1]) / 2.0
# If length of array is odd
else:
return c[len_c // 2]
if __name__ == "__main__":
a = [-5, 3, 6, 12, 15]
b = [-12, -10, -6, -3, 4, 10]
print(medianOf2(a, b))
C#
// C# Code to find Median of two Sorted Arrays of
// Different Sizes using Sorting
using System;
using System.Linq;
class GfG {
static double MedianOf2(int[] a, int[] b) {
// Merge both the arrays
int[] c = a.Concat(b).ToArray();
// Sort the concatenated array
Array.Sort(c);
int len = c.Length;
// If length of array is even
if (len % 2 == 0)
return (c[len / 2] + c[len / 2 - 1]) / 2.0;
// If length of array is odd
else
return c[len / 2];
}
static void Main() {
int[] a = { -5, 3, 6, 12, 15 };
int[] b = { -12, -10, -6, -3, 4, 10 };
Console.WriteLine(MedianOf2(a, b));
}
}
JavaScript
// JavaScript Code to find Median of two Sorted Arrays of
// Different Sizes using Sorting
function medianOf2(a, b) {
// Merge both the arrays
let c = [...a, ...b];
// Sort the concatenated array
c.sort((x, y) => x - y);
let len = c.length;
// If length of array is even
if (len % 2 === 0)
return (c[len / 2] + c[len / 2 - 1]) / 2.0;
// If length of array is odd
else
return c[Math.floor(len / 2)];
}
// Driver Code
let a = [-5, 3, 6, 12, 15];
let b = [-12, -10, -6, -3, 4, 10];
console.log(medianOf2(a, b));
Time Complexity: O((n + m)*log (n + m)), as we are sorting the merged array of size n + m.
Auxiliary Space: O(n + m), for storing the merged array.
[Better Approach] Use Merge of Merge Sort - O(m + n) Time and O(1) Space
The given arrays are sorted, so merge the sorted arrays in an efficient way and keep the count of elements merged so far. So when we reach half of the total, print the median. There can be two cases:
- Case 1: m+n is odd, the median is the ((m+n)/2)th element while merging the arrays.
- Case 2: m+n is even, the median will be the average of ((m+n)/2 - 1)th and ((m+n)/2)th element while merging the arrays.
C++
// C++ Code to find the median of two sorted arrays
// using Merge of Merge Sort
#include <iostream>
#include <vector>
using namespace std;
double medianOf2(vector<int>& a, vector<int>& b) {
int n = a.size(), m = b.size();
int i = 0, j = 0;
// m1 to store the middle element
// m2 to store the second middle element
int m1 = -1, m2 = -1;
// Loop till (m+n)/2
for (int count = 0; count <= (m + n) / 2; count++) {
m2 = m1;
// If both the arrays have remaining elements
if (i != n && j != m)
m1 = (a[i] > b[j]) ? b[j++] : a[i++];
// If only a[] has remaining elements
else if (i < n)
m1 = a[i++];
// If only b[] has remaining elements
else
m1 = b[j++];
}
// Return median based on odd/even size
if ((m + n) % 2 == 1)
return m1;
else
return (m1 + m2) / 2.0;
}
int main() {
vector<int> arr1 = { -5, 3, 6, 12, 15};
vector<int> arr2 = { -12, -10, -6, -3, 4, 10 };
cout << medianOf2(arr1, arr2) << endl;
return 0;
}
C
// C Code to find the median of two sorted arrays
// using Merge of Merge Sort
#include <stdio.h>
double medianOf2(int a[], int n, int b[], int m) {
int i = 0, j = 0;
// m1 to store the middle element
// m2 to store the second middle element
int m1 = -1, m2 = -1;
// Loop till (m+n)/2
for (int count = 0; count <= (m + n) / 2; count++) {
m2 = m1;
// If both the arrays have remaining elements
if (i != n && j != m)
m1 = (a[i] > b[j]) ? b[j++] : a[i++];
// If only a[] has remaining elements
else if (i < n)
m1 = a[i++];
// If only b[] has remaining elements
else
m1 = b[j++];
}
// Return median based on odd/even size
if ((m + n) % 2 == 1)
return m1;
else
return (m1 + m2) / 2.0;
}
int main() {
int arr1[] = { -5, 3, 6, 12, 15 };
int arr2[] = { -12, -10, -6, -3, 4, 10 };
int n = sizeof(arr1) / sizeof(arr1[0]);
int m = sizeof(arr2) / sizeof(arr2[0]);
printf("%f\n", medianOf2(arr1, n, arr2, m));
return 0;
}
Java
// Java Code to find the median of two sorted arrays
// using Merge of Merge Sort
import java.util.*;
class GfG {
static double medianOf2(int[] a, int[] b) {
int n = a.length, m = b.length;
int i = 0, j = 0;
// m1 to store the middle element
// m2 to store the second middle element
int m1 = -1, m2 = -1;
// Loop till (m + n)/2
for (int count = 0; count <= (m + n) / 2; count++) {
m2 = m1;
// If both the arrays have remaining elements
if (i != n && j != m)
m1 = (a[i] > b[j]) ? b[j++] : a[i++];
// If only a[] has remaining elements
else if (i < n)
m1 = a[i++];
// If only b[] has remaining elements
else
m1 = b[j++];
}
// Return median based on odd/even size
if ((m + n) % 2 == 1)
return m1;
else
return (m1 + m2) / 2.0;
}
public static void main(String[] args) {
int[] arr1 = { -5, 3, 6, 12, 15 };
int[] arr2 = { -12, -10, -6, -3, 4, 10 };
System.out.println(medianOf2(arr1, arr2));
}
}
Python
# Python Code to find the median of two sorted arrays
# using Merge of Merge Sort
def medianOf2(a, b):
n = len(a)
m = len(b)
i = 0
j = 0
# m1 to store the middle element
# m2 to store the second middle element
m1 = -1
m2 = -1
# Loop till (m+n)/2
for count in range((m + n) // 2 + 1):
m2 = m1
# If both the arrays have remaining elements
if i != n and j != m:
if a[i] > b[j]:
m1 = b[j]
j += 1
else:
m1 = a[i]
i += 1
# If only a[] has remaining elements
elif i < n:
m1 = a[i]
i += 1
# If only b[] has remaining elements
else:
m1 = b[j]
j += 1
# Return median based on odd/even size
if (m + n) % 2 == 1:
return m1
else:
return (m1 + m2) / 2.0
if __name__ == "__main__":
arr1 = [-5, 3, 6, 12, 15]
arr2 = [-12, -10, -6, -3, 4, 10]
print(medianOf2(arr1, arr2))
C#
// C# Code to find the median of two sorted arrays
// using Merge of Merge Sort
using System;
class GfG {
static double medianOf2(int[] a, int[] b) {
int n = a.Length, m = b.Length;
int i = 0, j = 0;
// m1 to store the middle element
// m2 to store the second middle element
int m1 = -1, m2 = -1;
// Loop till (m+n)/2
for (int count = 0; count <= (m + n) / 2; count++) {
m2 = m1;
// If both the arrays have remaining elements
if (i != n && j != m)
m1 = (a[i] > b[j]) ? b[j++] : a[i++];
// If only a[] has remaining elements
else if (i < n)
m1 = a[i++];
// If only b[] has remaining elements
else
m1 = b[j++];
}
// Return median based on odd/even size
if ((m + n) % 2 == 1)
return m1;
else
return (m1 + m2) / 2.0;
}
static void Main() {
int[] arr1 = { -5, 3, 6, 12, 15 };
int[] arr2 = { -12, -10, -6, -3, 4, 10 };
Console.WriteLine(medianOf2(arr1, arr2));
}
}
JavaScript
// JavaScript Code to find the median of two sorted arrays
// using Merge of Merge Sort
function medianOf2(a, b) {
let n = a.length, m = b.length;
let i = 0, j = 0;
// m1 to store the middle element
// m2 to store the second middle element
let m1 = -1, m2 = -1;
// Loop till (m+n)/2
for (let count = 0; count <= (m + n) / 2; count++) {
m2 = m1;
// If both the arrays have remaining elements
if (i != n && j != m)
m1 = (a[i] > b[j]) ? b[j++] : a[i++];
// If only a[] has remaining elements
else if (i < n)
m1 = a[i++];
// If only b[] has remaining elements
else
m1 = b[j++];
}
// Return median based on odd/even size
if ((m + n) % 2 === 1)
return m1;
else
return (m1 + m2) / 2.0;
}
// Driver Code
let arr1 = [-5, 3, 6, 12, 15];
let arr2 = [-12, -10, -6, -3, 4, 10];
console.log(medianOf2(arr1, arr2));
Time Complexity: O(n + m), where n and m are lengths of a[] and b[] respectively.
Auxiliary Space: O(1), No extra space is required.
[Expected Approach] Using Binary Search - O(log(min(n, m)) Time and O(1) Space
Prerequisite: Median of two sorted arrays of same size
The approach is similar to the Binary Search approach of Median of two sorted arrays of same size with the only difference that here we apply binary search on the smaller array instead of a[].
- Consider the first array is smaller. If first array is greater, then swap the arrays to make sure that the first array is smaller.
- We mainly maintain two sets in this algorithm by doing binary search in the smaller array. Let mid1 be the partition of the smaller array. The first set contains elements from 0 to (mid1 - 1) from smaller array and mid2 = ((n + m + 1) / 2 - mid1) elements from the greater array to make sure that the first set has exactly (n+m+1)/2 elements. The second set contains remaining half elements.
- Our target is to find a point in both arrays such that all elements in the first set are smaller than all elements in the elements in the other set (set that contains elements from right side). For this we validate the partitions using the same way as we did in Median of two sorted arrays of same size.
Why do we apply Binary Search on the smaller array?
Applying Binary Search on the smaller array helps us in two ways:
- Since we are applying binary search on the smaller array, we have optimized the time complexity of the algorithm from O(logn) to O(log(min(n, m)).
- Also, if we don't apply the binary search on the smaller array, then then we need to set low = max(0, (n + m + 1)/2 - m) and high = min(n, (n + m + 1)/2) to avoid partitioning mid1 or mid2 outside a[] or b[] respectively.
To avoid handling such cases, we can simply binary search on the smaller array.
C++
// C++ Program to find the median of two sorted arrays
// of different size using Binary Search
#include <iostream>
#include <vector>
#include <limits.h>
using namespace std;
double medianOf2(vector<int> &a, vector<int> &b) {
int n = a.size(), m = b.size();
// If a[] has more elements, then call medianOf2
// with reversed parameters
if (n > m)
return medianOf2(b, a);
int lo = 0, hi = n;
while (lo <= hi) {
int mid1 = (lo + hi) / 2;
int mid2 = (n + m + 1) / 2 - mid1;
// Find elements to the left and right of partition in a[]
int l1 = (mid1 == 0 ? INT_MIN : a[mid1 - 1]);
int r1 = (mid1 == n ? INT_MAX : a[mid1]);
// Find elements to the left and right of partition in b[]
int l2 = (mid2 == 0 ? INT_MIN : b[mid2 - 1]);
int r2 = (mid2 == m ? INT_MAX : b[mid2]);
// If it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// If the total elements are even, then median is
// the average of two middle elements
if ((n + m) % 2 == 0)
return (max(l1, l2) + min(r1, r2)) / 2.0;
// If the total elements are odd, then median is
// the middle element
else
return max(l1, l2);
}
// Check if we need to take lesser elements from a[]
if (l1 > r2)
hi = mid1 - 1;
// Check if we need to take more elements from a[]
else
lo = mid1 + 1;
}
return 0;
}
int main() {
vector<int> a = {1, 12, 15, 26, 38};
vector<int> b = {2, 13, 17, 30, 45, 60};
cout << medianOf2(a, b);
return 0;
}
C
// C Program to find the median of two sorted arrays
// of different size using Binary Search
#include <stdio.h>
#include <limits.h>
double medianOf2(int a[], int n, int b[], int m) {
// If a[] has more elements, then call medianOf2
// with reversed parameters
if (n > m)
return medianOf2(b, m, a, n);
int lo = 0, hi = n;
while (lo <= hi) {
int mid1 = (lo + hi) / 2;
int mid2 = (n + m + 1) / 2 - mid1;
// Find elements to the left and right of partition in a[]
int l1 = (mid1 == 0) ? INT_MIN : a[mid1 - 1];
int r1 = (mid1 == n) ? INT_MAX : a[mid1];
// Find elements to the left and right of partition in b[]
int l2 = (mid2 == 0) ? INT_MIN : b[mid2 - 1];
int r2 = (mid2 == m) ? INT_MAX : b[mid2];
// If it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// If the total elements are even, then median is
// the average of two middle elements
if ((n + m) % 2 == 0)
return (max(l1, l2) + min(r1, r2)) / 2.0;
// If the total elements are odd, then median is
// the middle element
else
return max(l1, l2);
}
// Check if we need to take fewer elements from a[]
if (l1 > r2)
hi = mid1 - 1;
// Check if we need to take more elements from a[]
else
lo = mid1 + 1;
}
return 0;
}
// Helper functions for max and min
int max(int a, int b) {
return a > b ? a : b;
}
int min(int a, int b) {
return a < b ? a : b;
}
int main() {
int a[] = {1, 12, 15, 26, 38};
int b[] = {2, 13, 17, 30, 45, 60};
int n = sizeof(a) / sizeof(a[0]);
int m = sizeof(b) / sizeof(b[0]);
printf("%f\n", medianOf2(a, n, b, m));
return 0;
}
Java
// Java Program to find the median of two sorted arrays
// of different size using Binary Search
import java.util.*;
class GfG {
static double medianOf2(int[] a, int[] b) {
int n = a.length, m = b.length;
// If a[] has more elements, then call medianOf2 with reversed parameters
if (n > m)
return medianOf2(b, a);
int lo = 0, hi = n;
while (lo <= hi) {
int mid1 = (lo + hi) / 2;
int mid2 = (n + m + 1) / 2 - mid1;
// Find elements to the left and right of partition in a[]
int l1 = (mid1 == 0) ? Integer.MIN_VALUE : a[mid1 - 1];
int r1 = (mid1 == n) ? Integer.MAX_VALUE : a[mid1];
// Find elements to the left and right of partition in b[]
int l2 = (mid2 == 0) ? Integer.MIN_VALUE : b[mid2 - 1];
int r2 = (mid2 == m) ? Integer.MAX_VALUE : b[mid2];
// If it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// If the total elements are even, then median is
// the average of two middle elements
if ((n + m) % 2 == 0)
return (Math.max(l1, l2) + Math.min(r1, r2)) / 2.0;
// If the total elements are odd, then median is
// the middle element
else
return Math.max(l1, l2);
}
// Check if we need to take fewer elements from a[]
if (l1 > r2)
hi = mid1 - 1;
// Check if we need to take more elements from a[]
else
lo = mid1 + 1;
}
return 0;
}
public static void main(String[] args) {
int[] a = {1, 12, 15, 26, 38};
int[] b = {2, 13, 17, 30, 45, 60};
System.out.println(medianOf2(a, b));
}
}
Python
# Python Program to find the median of two sorted arrays
# of different size using Binary Search
def medianOf2(a, b):
n = len(a)
m = len(b)
# If a[] has more elements, then call medianOf2
# with reversed parameters
if n > m:
return medianOf2(b, a)
lo = 0
hi = n
while lo <= hi:
mid1 = (lo + hi) // 2
mid2 = (n + m + 1) // 2 - mid1
# Find elements to the left and right of partition in a[]
l1 = (mid1 == 0) and float('-inf') or a[mid1 - 1]
r1 = (mid1 == n) and float('inf') or a[mid1]
# Find elements to the left and right of partition in b[]
l2 = (mid2 == 0) and float('-inf') or b[mid2 - 1]
r2 = (mid2 == m) and float('inf') or b[mid2]
# If it is a valid partition
if l1 <= r2 and l2 <= r1:
# If the total elements are even, then median is
# the average of two middle elements
if (n + m) % 2 == 0:
return (max(l1, l2) + min(r1, r2)) / 2.0
# If the total elements are odd, then median is
# the middle element
else:
return max(l1, l2)
# Check if we need to take lesser elements from a[]
if l1 > r2:
hi = mid1 - 1
# Check if we need to take more elements from a[]
else:
lo = mid1 + 1
return 0
if __name__ == "__main__":
a = [1, 12, 15, 26, 38]
b = [2, 13, 17, 30, 45, 60]
print(medianOf2(a, b))
C#
// C# Program to find the median of two sorted arrays
// of different size using Binary Search
using System;
class GfG {
static double medianOf2(int[] a, int[] b) {
int n = a.Length, m = b.Length;
// If a[] has more elements, then call medianOf2
// with reversed parameters
if (n > m)
return medianOf2(b, a);
int lo = 0, hi = n;
while (lo <= hi) {
int mid1 = (lo + hi) / 2;
int mid2 = (n + m + 1) / 2 - mid1;
// Find elements to the left and right of partition in a[]
int l1 = (mid1 == 0 ? int.MinValue : a[mid1 - 1]);
int r1 = (mid1 == n ? int.MaxValue : a[mid1]);
// Find elements to the left and right of partition in b[]
int l2 = (mid2 == 0 ? int.MinValue : b[mid2 - 1]);
int r2 = (mid2 == m ? int.MaxValue : b[mid2]);
// If it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// If the total elements are even, then median is
// the average of two middle elements
if ((n + m) % 2 == 0)
return (Math.Max(l1, l2) + Math.Min(r1, r2)) / 2.0;
// If the total elements are odd, then median is
// the middle element
else
return Math.Max(l1, l2);
}
// Check if we need to take lesser elements from arr1
if (l1 > r2)
hi = mid1 - 1;
// Check if we need to take more elements from arr1
else
lo = mid1 + 1;
}
return 0;
}
static void Main() {
int[] a = { 1, 12, 15, 26, 38 };
int[] b = { 2, 13, 17, 30, 45, 60 };
Console.WriteLine(medianOf2(a, b));
}
}
JavaScript
// JavaScript Program to find the median of two sorted arrays
// of different size using Binary Search
function medianOf2(a, b) {
let n = a.length, m = b.length;
// If a[] has more elements, then call medianOf2
// with reversed parameters
if (n > m)
return medianOf2(b, a);
let lo = 0, hi = n;
while (lo <= hi) {
let mid1 = Math.floor((lo + hi) / 2);
let mid2 = Math.floor((n + m + 1) / 2) - mid1;
// Find elements to the left and right of partition in a[]
let l1 = (mid1 === 0) ? -Infinity : a[mid1 - 1];
let r1 = (mid1 === n) ? Infinity : a[mid1];
// Find elements to the left and right of partition in b[]
let l2 = (mid2 === 0) ? -Infinity : b[mid2 - 1];
let r2 = (mid2 === m) ? Infinity : b[mid2];
// If it is a valid partition
if (l1 <= r2 && l2 <= r1) {
// If the total elements are even, then median is
// the average of two middle elements
if ((n + m) % 2 === 0)
return (Math.max(l1, l2) + Math.min(r1, r2)) / 2.0;
// If the total elements are odd, then median is
// the middle element
else
return Math.max(l1, l2);
}
// Check if we need to take lesser elements from a[]
if (l1 > r2)
hi = mid1 - 1;
// Check if we need to take more elements from a[]
else
lo = mid1 + 1;
}
return 0;
}
// Driver Code
let a = [1, 12, 15, 26, 38];
let b = [2, 13, 17, 30, 45, 60];
console.log(medianOf2(a, b));
Time Complexity: O(log(min(m, n))), since binary search is applied on the smaller array.
Auxiliary Space: O(1)
Median of two sorted arrays
Median of two Sorted Array
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem