Maximum sum of i*arr[i] among all rotations of a given array
Last Updated :
28 Jun, 2025
Given an integer array arr[] of size n, find the maximum value of the expression i * arr[i] (for all i from 0 to n-1) after rotating the array any number of times.
Examples:
Input: arr[] = [8, 3, 1, 2]
Output: 29
Explanation: Out of all the possible configurations by rotating the elements: arr[] = [3, 1, 2, 8] here (3*0) + (1*1) + (2*2) + (8*3) sum is maximum i.e. 29.
Input: arr[] = [1, 2, 3]
Output: 8
Explanation: Out of all the possible configurations by rotating the elements: arr[] = [1, 2, 3] here (1*0) + (2*1) + (3*2) sum is maximum i.e. 8.
[Naive Approach] Using Nested Loops - O(n ^ 2) Time and O(1) Space
The idea is to find the sum of all the elements of the array for each possible rotation, and store the maximum of them as answer.
- To do so, use nested loops, where the outer loop marks the starting point of the array, and the inner loop iterates through each of the element, and store the sum of i * arr[i].
- Check if the maximum sum is greater than the current sum then update the maximum sum.
C++
#include <iostream>
#include <vector>
#include <limits.h>
using namespace std;
int maxSum(vector<int> &arr) {
int n = arr.size();
int res = INT_MIN;
// Consider rotation beginning with i
// for all possible values of i.
for (int i = 0; i < n; i++) {
// Initialize sum of current rotation
int sum = 0;
// Compute sum of all values
for (int j = 0; j < n; j++) {
// compute the rotated index
int index = (i + j) % n;
sum += j * arr[index];
}
// Update the maximum value
res = max(res, sum);
}
return res;
}
int main() {
vector<int> arr = {8, 3, 1, 2};
cout << maxSum(arr);
return 0;
}
Java
class GfG {
static int maxSum(int[] arr) {
int n = arr.length;
// Initialize result
int res = Integer.MIN_VALUE;
// Consider rotation beginning with i
// for all possible values of i.
for (int i = 0; i < n; i++) {
// Initialize sum of current rotation
int sum = 0;
// Compute sum of all values
for (int j = 0; j < n; j++) {
// compute the rotated index
int index = (i + j) % n;
sum += j * arr[index];
}
// Update the maximum value
res = Math.max(res, sum);
}
return res;
}
public static void main(String[] args) {
int[] arr = {8, 3, 1, 2};
System.out.println(maxSum(arr));
}
}
Python
def maxSum(arr):
n = len(arr)
# Initialize result
res = -float('inf')
# Consider rotation beginning with i
# for all possible values of i.
for i in range(n):
# Initialize sum of current rotation
sum = 0
# Compute sum of all values
for j in range(n):
# compute the rotated index
index = (i + j) % n
sum += j * arr[index]
# Update the maximum value
res = max(res, sum)
return res
if __name__ == "__main__":
arr = [8, 3, 1, 2]
print(maxSum(arr))
C#
using System;
class GfG {
static int maxSum(int[] arr) {
int n = arr.Length;
// Initialize result
int res = int.MinValue;
// Consider rotation beginning with i
// for all possible values of i.
for (int i = 0; i < n; i++) {
// Initialize sum of current rotation
int sum = 0;
// Compute sum of all values
for (int j = 0; j < n; j++) {
// compute the rotated index
int index = (i + j) % n;
sum += j * arr[index];
}
// Update the maximum value
res = Math.Max(res, sum);
}
return res;
}
static void Main() {
int[] arr = {8, 3, 1, 2};
Console.WriteLine(maxSum(arr));
}
}
JavaScript
function maxSum(arr) {
let n = arr.length;
// Initialize result
let res = -Infinity;
// Consider rotation beginning with i
// for all possible values of i.
for (let i = 0; i < n; i++) {
// Initialize sum of current rotation
let sum = 0;
// Compute sum of all values
for (let j = 0; j < n; j++) {
// compute the rotated index
let index = (i + j) % n;
sum += j * arr[index];
}
// Update the maximum value
res = Math.max(res, sum);
}
return res;
}
// Driver Code
let arr = [8, 3, 1, 2];
console.log(maxSum(arr));
[Expected Approach] Using Mathematics - O(n) Time and O(1) Space
The main idea is to Instead of recalculating the weighted sum from scratch for each rotation, it first computes the total sum of the array and the initial rotation value. Then, for each subsequent rotation, it derives the new value using a formula based on the previous value and the total sum. and find the maximum value of the sum across all rotations of the array.
We can calculate the value of the next rotation using the value of the current one. Let curSum be the total sum of all elements in the array, and currVal be the value of the current rotation. Then, the value of the next rotation can be derived from currVal by adjusting it based on the shift in element positions.
finding NextVal Using currVal:

We can compute the value of the ith rotation using the value of the (i-1)th rotation:
Nextval = currVal - (curSum - arr[i-1]) + arr[i-1] * (n-1)
C++
#include <iostream>
#include <vector>
using namespace std;
int maxSum(vector<int> &arr) {
int n = arr.size();
// Compute sum of all array elements
int curSum = 0;
for (int i = 0; i < n; i++)
curSum += arr[i];
// Compute sum of i*arr[i] for initial
// configuration.
int currVal = 0;
for (int i = 0; i < n; i++)
currVal += i * arr[i] ;
// Initialize result
int res = currVal ;
// Compute values for other iterations
for (int i = 1; i < n; i++) {
// Compute next value using previous
int nextVal = currVal - (curSum - arr[i - 1]) +
arr[i - 1] * (n - 1);
// Update current value
currVal = nextVal;
// Update result if required
res = max(res, nextVal);
}
return res;
}
int main() {
vector<int> arr = {8, 3, 1, 2};
cout << maxSum(arr);
return 0;
}
Java
class GfG {
static int maxSum(int[] arr) {
int n = arr.length;
// Compute sum of all array elements
int curSum = 0;
for (int i = 0; i < n; i++)
curSum += arr[i];
// Compute sum of i*arr[i] for initial
// configuration.
int currVal = 0;
for (int i = 0; i < n; i++)
currVal += i * arr[i];
// Initialize result
int res = currVal;
// Compute values for other iterations
for (int i = 1; i < n; i++) {
// Compute next value using previous
int nextVal = currVal - (curSum - arr[i - 1]) +
arr[i - 1] * (n - 1);
// Update current value
currVal = nextVal;
// Update result if required
res = Math.max(res, nextVal);
}
return res;
}
public static void main(String[] args) {
int[] arr = {8, 3, 1, 2};
System.out.println(maxSum(arr));
}
}
Python
def maxSum(arr):
n = len(arr)
# Compute sum of all array elements
curSum = 0
for i in range(n):
curSum += arr[i]
# Compute sum of i*arr[i] for initial
# configuration.
currVal = 0
for i in range(n):
currVal += i * arr[i]
# Initialize result
res = currVal
# Compute values for other iterations
for i in range(1, n):
# Compute next value using previous
nextVal = currVal - (curSum - arr[i - 1]) \
+ arr[i - 1] * (n - 1)
# Update current value
currVal = nextVal
# Update result if required
res = max(res, nextVal)
return res
if __name__ == "__main__":
arr = [8, 3, 1, 2]
print(maxSum(arr))
C#
using System;
class GfG {
static int maxSum(int[] arr) {
int n = arr.Length;
// Compute sum of all array elements
int curSum = 0;
for (int i = 0; i < n; i++)
curSum += arr[i];
// Compute sum of i*arr[i] for initial
// configuration.
int currVal = 0;
for (int i = 0; i < n; i++)
currVal += i * arr[i];
// Initialize result
int res = currVal;
// Compute values for other iterations
for (int i = 1; i < n; i++) {
// Compute next value using previous
int nextVal = currVal - (curSum - arr[i - 1]) +
arr[i - 1] * (n - 1);
// Update current value
currVal = nextVal;
// Update result if required
res = Math.Max(res, nextVal);
}
return res;
}
static void Main() {
int[] arr = {8, 3, 1, 2};
Console.WriteLine(maxSum(arr));
}
}
JavaScript
function maxSum(arr) {
let n = arr.length;
// Compute sum of all array elements
let curSum = 0;
for (let i = 0; i < n; i++)
curSum += arr[i];
// Compute sum of i*arr[i] for initial
// configuration.
let currVal = 0;
for (let i = 0; i < n; i++)
currVal += i * arr[i];
// Initialize result
let res = currVal;
// Compute values for other iterations
for (let i = 1; i < n; i++) {
// Compute next value using previous
let nextVal = currVal - (curSum - arr[i - 1]) +
arr[i - 1] * (n - 1);
// Update current value
currVal = nextVal;
// Update result if required
res = Math.max(res, nextVal);
}
return res;
}
// Driver Code
let arr = [8, 3, 1, 2];
console.log(maxSum(arr));
[Alternate Approach] Using Pivot - O(n) Time and O(1) Space
Note: This approach works only for sorted or rotated sorted arrays.
We know for an array the maximum sum will be when the array is sorted in ascending order. In case of a sorted rotated array, we can rotate the array to make it in ascending order. So, in this case, the pivot element is needed to be found following which the maximum sum can be calculated.
- Find the pivot of the array: if arr[i] > arr[(i+1)%n] then it is the pivot element. (i+1)%n is used to check for the last and first element.
- After getting pivot the sum can be calculated by finding the difference with the pivot which will be the multiplier and multiply it with the current element while calculating the sum
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to find pivot
int findPivot(vector<int> &arr) {
int n = arr.size();
for(int i = 0; i < n; i++) {
if(arr[i] > arr[(i + 1) % n])
return i;
}
return 0;
}
// Function to find maximum sum rotation
int maxSum(vector<int> &arr) {
int n = arr.size();
// initialize result
int res = 0;
int pivot = findPivot(arr);
// difference in pivot and index of
// last element of array
int diff = n - 1 - pivot;
// compute the sum
for(int i = 0; i < n; i++) {
res = res + ((i + diff) % n) * arr[i];
}
return res;
}
int main() {
vector<int> arr = {8, 3, 1, 2};
cout << maxSum(arr);
return 0;
}
Java
class GfG {
// Function to find pivot
static int findPivot(int[] arr) {
int n = arr.length;
for (int i = 0; i < n; i++) {
if (arr[i] > arr[(i + 1) % n])
return i;
}
return 0;
}
// Function to find maximum sum rotation
static int maxSum(int[] arr) {
int n = arr.length;
// initialize result
int res = 0;
int pivot = findPivot(arr);
// difference in pivot and index of
// last element of array
int diff = n - 1 - pivot;
// compute the sum
for (int i = 0; i < n; i++) {
res = res + ((i + diff) % n) * arr[i];
}
return res;
}
public static void main(String[] args) {
int[] arr = {8, 3, 1, 2};
System.out.println(maxSum(arr));
}
}
Python
def findPivot(arr):
n = len(arr)
for i in range(n):
if arr[i] > arr[(i + 1) % n]:
return i
return 0
# Function to find maximum sum rotation
def maxSum(arr):
n = len(arr)
# initialize result
res = 0
pivot = findPivot(arr)
# difference in pivot and index of
# last element of array
diff = n - 1 - pivot
# compute the sum
for i in range(n):
res = res + ((i + diff) % n) * arr[i]
return res
if __name__ == "__main__":
arr = [8, 3, 1, 2]
print(maxSum(arr))
C#
using System;
class GfG {
// Function to find pivot
static int findPivot(int[] arr) {
int n = arr.Length;
for (int i = 0; i < n; i++) {
if (arr[i] > arr[(i + 1) % n])
return i;
}
return 0;
}
// Function to find maximum sum rotation
static int maxSum(int[] arr) {
int n = arr.Length;
// initialize result
int res = 0;
int pivot = findPivot(arr);
// difference in pivot and index of
// last element of array
int diff = n - 1 - pivot;
// compute the sum
for (int i = 0; i < n; i++) {
res = res + ((i + diff) % n) * arr[i];
}
return res;
}
static void Main() {
int[] arr = {8, 3, 1, 2};
Console.WriteLine(maxSum(arr));
}
}
JavaScript
function findPivot(arr) {
let n = arr.length;
for (let i = 0; i < n; i++) {
if (arr[i] > arr[(i + 1) % n])
return i;
}
return 0;
}
// Function to find maximum sum rotation
function maxSum(arr) {
let n = arr.length;
// initialize result
let res = 0;
let pivot = findPivot(arr);
// difference in pivot and index of
// last element of array
let diff = n - 1 - pivot;
// compute the sum
for (let i = 0; i < n; i++) {
res = res + ((i + diff) % n) * arr[i];
}
return res;
}
// Driver Code
let arr = [8, 3, 1, 2];
console.log(maxSum(arr));
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem