Open In App

Longest Palindromic Substring

Last Updated : 30 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a string s, find the longest substring which is a palindrome. If there are multiple answers, then find the first appearing substring.

Examples:

Input: s = "forgeeksskeegfor"
Output: "geeksskeeg"
Explanation: The longest substring that reads the same forward and backward is "geeksskeeg". Other palindromes like "kssk" or "eeksskee" are shorter.

Input: s = "Geeks"
Output: "ee"
Explanation: The substring "ee" is the longest palindromic part in "Geeks". All others are shorter single characters.

Input: s = "abc"
Output: "a"
Explanation: No multi-letter palindromes exist. So the first character "a" is returned as the longest palindromic substring.

[Naive Approach] Generating all sub-strings - O(n3) time and O(1) space

Generate all possible substrings of the given string. For each substring, check if it is a palindrome.
If it is, update the result if its length is greater than the longest palindrome found so far.

C++
#include <iostream>
using namespace std;

// function to check if a substring 
// s[low..high] is a palindrome
bool checkPal(string &s, int low, int high) {
    while (low < high) {
        if (s[low] != s[high])
            return false;
        low++;
        high--;
    }
    return true;
}

// function to find the longest palindrome substring
string getLongestPal(string& s) {
  
    int n = s.size();

    // all substrings of length 1 are palindromes
    int maxLen = 1, start = 0;

    // nested loop to mark start and end index
    for (int i = 0; i < n; i++) {
        for (int j = i; j < n; j++) {
          
            // check if the current substring is 
            // a palindrome
            if (checkPal(s, i, j) && (j - i + 1) > maxLen) {
                start = i;
                maxLen = j - i + 1;
            }
        }
    }

    return s.substr(start, maxLen);
}

int main() {
    string s = "forgeeksskeegfor";
    cout << getLongestPal(s) << endl;
    return 0;
}
Java
class GfG {
    // function to check if a substring 
    // s[low..high] is a palindrome
    static boolean checkPal(String s, int low, int high) {
        while (low < high) {
            if (s.charAt(low) != s.charAt(high))
                return false;
            low++;
            high--;
        }
        return true;
    }

    // function to find the longest palindrome substring
    static String getLongestPal(String s) {

        int n = s.length();

        // all substrings of length 1 are palindromes
        int maxLen = 1, start = 0;

        // nested loop to mark start and end index
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n; j++) {

                // check if the current substring is 
                // a palindrome
                if (checkPal(s, i, j) && (j - i + 1) > maxLen) {
                    start = i;
                    maxLen = j - i + 1;
                }
            }
        }
        return s.substring(start, start + maxLen);
    }

    public static void main(String[] args) {
        String s = "forgeeksskeegfor";
        System.out.println(getLongestPal(s));
    }
}
Python
# function to check if a substring 
# s[low..high] is a palindrome
def checkPal(str, low, high):
    while low < high:
        if str[low] != str[high]:
            return False
        low += 1
        high -= 1
    return True

# function to find the longest palindrome substring
def getLongestPal(s):
    
    n = len(s)

    # all substrings of length 1 are palindromes
    maxLen = 1
    start = 0

    # nested loop to mark start and end index
    for i in range(n):
        for j in range(i, n):

            # check if the current substring is 
            # a palindrome
            if checkPal(s, i, j) and (j - i + 1) > maxLen:
                start = i
                maxLen = j - i + 1

    return s[start:start + maxLen]

if __name__ == "__main__":
    s = "forgeeksskeegfor"
    print(getLongestPal(s))
C#
using System;

class GfG {
    // function to check if a substring 
    // s[low..high] is a palindrome
    static bool checkPal(string s, int low, int high) {
        while (low < high) {
            if (s[low] != s[high])
                return false;
            low++;
            high--;
        }
        return true;
    }

    // function to find the longest palindrome substring
    static string getLongestPal(string s) {

        int n = s.Length;

        // all substrings of length 1 are palindromes
        int maxLen = 1, start = 0;

        // nested loop to mark start and end index
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n; j++) {

                // check if the current substring is 
                // a palindrome
                if (checkPal(s, i, j) && (j - i + 1) > maxLen) {
                    start = i;
                    maxLen = j - i + 1;
                }
            }
        }

        return s.Substring(start, maxLen);
    }

    static void Main(string[] args) {
        string s = "forgeeksskeegfor";
        Console.WriteLine(getLongestPal(s));
    }
}
JavaScript
// function to check if a substring 
// s[low..high] is a palindrome
function checkPal(s, low, high) {
    while (low < high) {
        if (s[low] !== s[high])
            return false;
        low++;
        high--;
    }
    return true;
}

// function to find the longest palindrome substring
function getLongestPal(s) {

    const n = s.length;

    // all substrings of length 1 are palindromes
    let maxLen = 1, start = 0;

    // nested loop to mark start and end index
    for (let i = 0; i < n; i++) {
        for (let j = i; j < n; j++) {

            // check if the current substring is 
            // a palindrome
            if (checkPal(s, i, j) && (j - i + 1) > maxLen) {
                start = i;
                maxLen = j - i + 1;
            }
        }
    }

    return s.substring(start, start + maxLen);
}

// Driver Code
const s = "forgeeksskeegfor";
console.log(getLongestPal(s));

Output
geeksskeeg

[Better Approach - 1] Using Dynamic Programming - O(n2) time and O(n2) space

The idea is to use Dynamic Programming to store the status of smaller substrings and use these results to check if a longer substring forms a palindrome.

  • The main idea behind the approach is that if we know the status (i.e., palindrome or not) of the substring ranging [i, j], we can find the status of the substring ranging [i-1, j+1] by only matching the character str[i-1] and str[j+1].
  • If the substring from i to j is not a palindrome, then the substring from i-1 to j+1 will also not be a palindrome. Otherwise, it will be a palindrome only if str[i-1] and str[j+1] are the same.
  • Base on this fact, we can create a 2D table (say table[][] which stores status of substring str[i . . . j] ), and check for substrings with length from 1 to n. For each length find all the substrings starting from each character i and find if it is a palindrome or not using the above idea. The longest length for which a palindrome formed will be the required answer.

Note: Refer to Longest Palindromic Substring using Dynamic Programming for detailed approach.

C++
#include <iostream>
#include <vector>
using namespace std;

string getLongestPal(string s) {
    int n = s.size();
    vector<vector<bool>> dp(n, vector<bool>(n, false));
    
    // dp[i][j] if the substring  from [i to j]
    // is a palindrome or not
    
    int start = 0, maxLen = 1;
    
    // all substrings of length 1 are palindromes
    for (int i = 0; i < n; ++i) dp[i][i] = true;
    
    // check for substrings of length 2
    for (int i = 0; i < n - 1; ++i) {
        if (s[i] == s[i+1]) {
            dp[i][i+1] = true;
              if(maxLen==1){
                    start = i;
                    maxLen = 2;
                }
        }
    }
    
    // check for substrings of length 3 and more
    for (int len = 3; len <= n; ++len) {
        for (int i = 0; i <= n - len; ++i) {
            int j = i + len - 1;
            
            // if s[i] == s[j] then check for 
            //  i [i+1  --- j-1] j 
            if (s[i] == s[j] && dp[i+1][j-1]) { 
                dp[i][j] = true;
                if(len>maxLen){
                    start = i;
                    maxLen = len;
                }
            }
        }
    }
    return s.substr(start, maxLen);
}

int main() {
    string s = "forgeeksskeegfor";
    cout << getLongestPal(s) << endl; 
}
Java
class GfG {
    public static String getLongestPal(String s) {
       
        int n = s.length();
        boolean[][] dp = new boolean[n][n];

        // dp[i][j] if the substring  from [i to j]
        // is a palindrome or not

        int start = 0, maxLen = 1;

        // all substrings of length 1 are palindromes
        for (int i = 0; i < n; ++i) dp[i][i] = true;

        // check for substrings of length 2
        for (int i = 0; i < n - 1; ++i) {
            if (s.charAt(i) == s.charAt(i + 1)) {
                dp[i][i + 1] = true;
              
                if(maxLen == 1){
                    start = i;
                    maxLen = 2;
                }
            }
        }

        // check for substrings of length 3 and more
        for (int len = 3; len <= n; ++len) {
            for (int i = 0; i <= n - len; ++i) {
                int j = i + len - 1;

                // if s[i] == s[j] then check for 
                //  i [i+1  --- j-1] j 
                if (s.charAt(i) == s.charAt(j) && dp[i + 1][j - 1]) {
                    dp[i][j] = true;
                    
                    if(len > maxLen){
                        start = i;
                        maxLen = len;
                    }
                }
            }
        }

        return s.substring(start, start + maxLen);
    }

    public static void main(String[] args) {
        String s = "forgeeksskeegfor";
        System.out.println(getLongestPal(s));
    }
}
Python
def getLongestPal(s):
    n = len(s)
    dp = [[False] * n for _ in range(n)]
    
    # dp[i][j] if the substring from [i to j] is a palindrome or not
    start = 0
    maxLen = 1
    
    # all substrings of length 1 are palindromes
    for i in range(n):
        dp[i][i] = True
    
    # check for substrings of length 2
    for i in range(n - 1):
        if s[i] == s[i + 1]:
            dp[i][i + 1] = True
            if maxLen == 1:
                start = i
                maxLen = 2
    
    # check for substrings of length 3 and more
    for length in range(3, n + 1):
        for i in range(n - length + 1):
            j = i + length - 1
    
            # if s[i] == s[j] then check for [i+1 .. j-1]
            if s[i] == s[j] and dp[i + 1][j - 1]:
                dp[i][j] = True
                if length > maxLen:
                    start = i
                    maxLen = length
    
    return s[start:start + maxLen]
        
if __name__ == "__main__":
    s = "forgeeksskeegfor"
    print(getLongestPal(s))
C#
using System;

class GfG {
    static string getLongestPal(string s) {
        int n = s.Length;
        bool[,] dp = new bool[n, n];
    
        // dp[i][j] if the substring  from [i to j]
        // is a palindrome or not
    
        int start = 0, maxLen = 1;
    
        // all substrings of length 1 are palindromes
        for (int i = 0; i < n; ++i) dp[i, i] = true;
    
        // check for substrings of length 2
        for (int i = 0; i < n - 1; ++i) {
            if (s[i] == s[i + 1]) {
                dp[i, i + 1] = true;
                if (maxLen == 1) {
                    start = i;
                    maxLen = 2;
                }
            }
        }
    
        // check for substrings of length 3 and more
        for (int len = 3; len <= n; ++len) {
            for (int i = 0; i <= n - len; ++i) {
                int j = i + len - 1;
    
                // if s[i] == s[j] then check for 
                //  i [i+1  --- j-1] j 
                if (s[i] == s[j] && dp[i + 1, j - 1]) {
                    dp[i, j] = true;
                    if (len > maxLen) {
                        start = i;
                        maxLen = len;
                    }
                }
            }
        }
    
        return s.Substring(start, maxLen);
    }

    public static void Main(string[] args) {
        string s = "forgeeksskeegfor";
        Console.WriteLine(getLongestPal(s));
    }
}
JavaScript
function getLongestPal(s) {
    let n = s.length;
    const dp = Array.from({ length: n }, () => new Uint8Array(n));

    // dp[i][j] if the substring from [i to j]
    // is a palindrome or not

    let start = 0, maxLen = 1;

    // all substrings of length 1 are palindromes
    for (let i = 0; i < n; ++i) dp[i][i] = true;

    // check for substrings of length 2
    for (let i = 0; i < n - 1; ++i) {
        if (s[i] === s[i + 1]) {
            dp[i][i + 1] = true;
            if (maxLen === 1) {
                start = i;
                maxLen = 2;
            }
        }
    }

    // check for substrings of length 3 and more
    for (let len = 3; len <= n; ++len) {
        for (let i = 0; i <= n - len; ++i) {
            let j = i + len - 1;

            // if s[i] == s[j] then check for 
            //  i [i+1  --- j-1] j 
            if (s[i] === s[j] && dp[i + 1][j - 1]) {
                dp[i][j] = true;
                if (len > maxLen) {
                    start = i;
                    maxLen = len;
                }
            }
        }
    }

    return s.substring(start, start + maxLen);
}

// Driver Code
let s = "forgeeksskeegfor";
console.log(getLongestPal(s));

Output
geeksskeeg

[Better Approach - 2] Using Expansion from center - O(n2) time and O(1) space

The idea is to traverse each character in the string and treat it as a potential center of a palindrome, trying to expand around it in both directions while checking if the expanded substring remains a palindrome.
=> For each position, we check for both odd-length palindromes (where the current character is the center) and even-length palindromes (where the current character and the next character together form the center).
=> As we expand outward from each center, we keep track of the start position and length of the longest palindrome found so far, updating these values whenever we find a longer valid palindrome.

Step-by-step approach:

  • Iterate through each character in the string, treating it as the center of a potential palindrome.
  • For each center, expand in two ways: one for odd-length palindromes (center at index i) and one for even-length palindromes (center between indices i and i+1)
  • Use two pointers low and high to track the left and right boundaries of the current palindrome.
  • While low and high are in bounds and s[low] == s[high], expand outward.
  • If the current palindrome length (high - low + 1) is greater than the previous maximum, update the starting index and max length.
  • After checking all centers, return the substring starting at start with length maxLen.
C++
#include <iostream>
using namespace std;

string getLongestPal(string &s) {
    
    int n = s.length();
    int start = 0, maxLen = 1;

    for (int i = 0; i < n; i++) {

        // this runs two times for both odd and even 
        // length palindromes. 
        // j = 0 means odd and j = 1 means even length
        for (int j = 0; j <= 1; j++) {
            int low = i;
            int high = i + j; 

            // expand substring while it is a palindrome
            // and in bounds
            while (low >= 0 && high < n && s[low] == s[high]) 
            {
                int currLen = high - low + 1;
                if (currLen > maxLen) {
                    start = low;
                    maxLen = currLen;
                }
                low--;
                high++;
            }
        }
    }

    return s.substr(start, maxLen);
}

int main() {
    string s = "forgeeksskeegfor";
    cout << getLongestPal(s) << endl;
    return 0;
}
Java
class GfG {

    static String getLongestPal(String s) {
        int n = s.length();

        int start = 0, maxLen = 1;

        for (int i = 0; i < n; i++) {

            // this runs two times for both odd and even 
            // length palindromes. 
            // j = 0 means odd and j = 1 means even length
            for (int j = 0; j <= 1; j++) {
                int low = i;
                int high = i + j; 

                // expand substring while it is a palindrome
                // and in bounds
                while (low >= 0 && high < n && s.charAt(low) == s.charAt(high)) 
                {
                    int currLen = high - low + 1;
                    if (currLen > maxLen) {
                        start = low;
                        maxLen = currLen;
                    }
                    low--;
                    high++;
                }
            }
        }

        return s.substring(start, start + maxLen);
    }

    public static void main(String[] args) {
        String s = "forgeeksskeegfor";
        System.out.println(getLongestPal(s));
    }
}
Python
def getLongestPal(s):
    n = len(s)

    start, maxLen = 0, 1

    for i in range(n):

        # this runs two times for both odd and even 
        # length palindromes. 
        # j = 0 means odd and j = 1 means even length
        for j in range(2):
            low, high = i, i + j

            # expand substring while it is a palindrome
            # and in bounds
            while low >= 0 and high < n and s[low] == s[high]:
                currLen = high - low + 1
                if currLen > maxLen:
                    start = low
                    maxLen = currLen
                low -= 1
                high += 1

    return s[start:start + maxLen]

if __name__ == "__main__":
    s = "forgeeksskeegfor"
    print(getLongestPal(s))
C#
using System;

class GfG {
    static string getLongestPal(string s) {
        int n = s.Length;

        int start = 0, maxLen = 1;

        for (int i = 0; i < n; i++) {

            // this runs two times for both odd and even 
            // length palindromes. 
            // j = 0 means odd and j = 1 means even length
            for (int j = 0; j <= 1; j++) {
                int low = i;
                int high = i + j; 

                // expand substring while it is a palindrome
                // and in bounds
                while (low >= 0 && high < n && s[low] == s[high]) 
                {
                    int currLen = high - low + 1;
                    if (currLen > maxLen) {
                        start = low;
                        maxLen = currLen;
                    }
                    low--;
                    high++;
                }
            }
        }

        return s.Substring(start, maxLen);
    }

    static void Main(string[] args) {
        string s = "forgeeksskeegfor";
        Console.WriteLine(getLongestPal(s));
    }
}
JavaScript
function getLongestPal(s) {
    const n = s.length;

    let start = 0, maxLen = 1;

    for (let i = 0; i < n; i++) {

        // this runs two times for both odd and even 
        // length palindromes. 
        // j = 0 means odd and j = 1 means even length
        for (let j = 0; j <= 1; j++) {
            let low = i;
            let high = i + j; 

            // expand substring while it is a palindrome
            // and in bounds
            while (low >= 0 && high < n && s[low] === s[high]) 
            {
                const currLen = high - low + 1;
                if (currLen > maxLen) {
                    start = low;
                    maxLen = currLen;
                }
                low--;
                high++;
            }
        }
    }

    return s.substring(start, start + maxLen);
}

// Driver Code
const s = "forgeeksskeegfor";
console.log(getLongestPal(s));

Output
geeksskeeg

[Expected Approach] Using Manacher’s Algorithm - O(n) time and O(n) space

The idea is to use Manacher’s algorithm, which transforms the input string by inserting separators (#) and sentinels to handle both even and odd-length palindromes uniformly.
For each position in the transformed string, we expand the longest possible palindrome centered there using mirror symmetry and previously computed values.
This expansion is bounded efficiently using the rightmost known palindrome range to avoid redundant checks.
Whenever a longer palindrome is found, we update its length and starting index in the original string.

C++
#include <iostream>
#include <vector>
#include <string>
using namespace std;

class manacher {
public:
    // p[i] stores the radius of the palindrome 
    // centered at position i in ms
    vector<int> p;  
    
    // transformed string with sentinels
    // and separators
    string ms;      

    manacher(string &s) {
        
        // left sentinel to avoid bounds check
        ms = "@";  
        for (char c : s) {
            
            // insert '#' between every character
            ms += "#" + string(1, c);  
        }
        
        // right sentinel
        ms += "#$";  
        runManacher();
    }

    void runManacher() {
        int n = ms.size();
        p.assign(n, 0);
        int l = 0, r = 0;

        for (int i = 1; i < n - 1; ++i) {
            // initialize p[i] based on its mirror 
            // and current [l, r] range
            if(r + l - i >= 0 && r + l - i < n)
                p[i] = max(0, min(r - i, p[r + l - i]));

            // try expanding around center i
            while (ms[i + 1 + p[i]] == ms[i - 1 - p[i]]) {
                ++p[i];
            }

            // update [l, r] if the new palindrome goes 
            // beyond current right boundary
            if (i + p[i] > r) {
                l = i - p[i];
                r = i + p[i];
            }
        }
    }

    // return the radius of the longest palindrome
    // centered at original index 'cen'
    int getLongest(int cen, int odd) {
        int pos = 2 * cen + 2 + !odd;
        return p[pos];
    }

    // checks whether the substring 
    // s[l..r] is a palindrome
    bool check(int l, int r) {
        int res = getLongest((r + l) / 2, (r - l + 1) % 2);
        return (r - l + 1) <= res;
    }
};

// finds and returns the longest palindromic substring in s
string getLongestPal(string &s) {
    int n = s.size(), maxLen = 1, start = 0;
    manacher M(s);

    for (int i = 0; i < n; ++i) {
        int oddLen = M.getLongest(i, 1);
        if (oddLen > maxLen) {
            // update start for odd-length palindrome
            start = i - (oddLen - 1) / 2;  
        }

        int evenLen = M.getLongest(i, 0);
        if (evenLen > maxLen) {
            // update start for even-length palindrome
            start = i - (evenLen - 1) / 2;  
        }

        maxLen = max(maxLen, max(oddLen, evenLen));
    }

    return s.substr(start, maxLen);
}

int main() {
    string s = "forgeeksskeegfor";
    cout << getLongestPal(s) << endl;
    return 0;
}
Java
class Manacher {
    // p[i] stores the radius of the palindrome 
    // centered at position i in ms
    int[] p;

    // transformed string with sentinels 
    // and separators
    String ms;

    public Manacher(String s) {
        // left sentinel to avoid bounds check
        StringBuilder sb = new StringBuilder("@");  
        for (char c : s.toCharArray()) {
            
             // insert '#' between every character
            sb.append("#").append(c); 
        }
        // right sentinel
        sb.append("#$");  
        ms = sb.toString();
        runManacher();
    }

    private void runManacher() {
        int n = ms.length();
        p = new int[n];
        int l = 0, r = 0;

        for (int i = 1; i < n - 1; ++i) {
            int mirror = l + r - i;
            if (mirror >= 0 && mirror < n) {
                p[i] = Math.max(0, Math.min(r - i, p[mirror]));
            } else {
                p[i] = 0;
            }

            // try expanding around center i
            while ((i + 1 + p[i]) < n && (i - 1 - p[i]) >= 0 &&
                    ms.charAt(i + 1 + p[i]) == ms.charAt(i - 1 - p[i])) {
                ++p[i];
            }

            // update [l, r] if the new palindrome goes 
            // beyond current right boundary
            if (i + p[i] > r) {
                l = i - p[i];
                r = i + p[i];
            }
        }
    }

    // return the radius of the longest palindrome 
    // centered at original index 'cen'
    public int getLongest(int cen, int odd) {
        int pos = 2 * cen + 2 + (odd == 0 ? 1 : 0);
        return p[pos];
    }

    // checks whether the substring 
    // s[l..r] is a palindrome
    public boolean check(int l, int r) {
        int res = getLongest((r + l) / 2, (r - l + 1) % 2);
        return (r - l + 1) <= res;
    }
}
class GfG {
    // finds and returns the longest 
    // palindromic substring in s
    public static String getLongestPal(String s) {
        int n = s.length(), maxLen = 1, start = 0;
        Manacher M = new Manacher(s);

        for (int i = 0; i < n; ++i) {
            int oddLen = M.getLongest(i, 1);
            if (oddLen > maxLen) {
                // update start for odd-length palindrome
                start = i - (oddLen - 1) / 2;
            }

            int evenLen = M.getLongest(i, 0);
            if (evenLen > maxLen) {
                // update start for even-length palindrome
                start = i - (evenLen - 1) / 2;
            }

            maxLen = Math.max(maxLen, Math.max(oddLen, evenLen));
        }

        return s.substring(start, start + maxLen);
    }

    public static void main(String[] args) {
        String s = "forgeeksskeegfor";
        System.out.println(getLongestPal(s));
    }
}
Python
class manacher:
    # p[i] stores the radius of the palindrome 
    # centered at position i in ms

    def __init__(self, s):
        # transformed string with sentinels 
        # and separators
        self.ms = "@"
        for c in s:
            self.ms += "#" + c
        self.ms += "#$"
        self.p = [0] * len(self.ms)
        self.runManacher()

    def runManacher(self):
        n = len(self.ms)
        l = r = 0

        for i in range(1, n - 1):
            mirror = l + r - i
            if 0 <= mirror < n:
                self.p[i] = max(0, min(r - i, self.p[mirror]))
            else:
                self.p[i] = 0

            # try expanding around center i
            while (i + 1 + self.p[i] < n and
                   i - 1 - self.p[i] >= 0 and
                   self.ms[i + 1 + self.p[i]] == self.ms[i - 1 - self.p[i]]):
                self.p[i] += 1

            # update [l, r] if the new palindrome goes 
            # beyond current right boundary
            if i + self.p[i] > r:
                l = i - self.p[i]
                r = i + self.p[i]

    # return the radius of the longest palindrome 
    # centered at original index 'cen'
    def getLongest(self, cen, odd):
        pos = 2 * cen + 2 + (0 if odd else 1)
        return self.p[pos]

    # checks whether the substring 
    # s[l..r] is a palindrome
    def check(self, l, r):
        length = r - l + 1
        return length <= self.getLongest((l + r) // 2, length % 2)


# finds and returns the longest 
# palindromic substring in s
def getLongestPal(s):
    n = len(s)
    maxLen = 1
    start = 0
    M = manacher(s)

    for i in range(n):
        oddLen = M.getLongest(i, 1)
        if oddLen > maxLen:
            # update start for odd-length palindrome
            start = i - (oddLen - 1) // 2

        evenLen = M.getLongest(i, 0)
        if evenLen > maxLen:
            # update start for even-length palindrome
            start = i - (evenLen - 1) // 2

        maxLen = max(maxLen, max(oddLen, evenLen))

    return s[start:start + maxLen]


if __name__ == "__main__":
    s = "forgeeksskeegfor"
    print(getLongestPal(s))
C#
using System;

class manacher {
    // p[i] stores the radius of the palindrome 
    // centered at position i in ms
    public int[] p;

    // transformed string with sentinels 
    // and separators
    public string ms;

    public manacher(string s) {
        ms = "@";
        foreach (char c in s) {
            ms += "#" + c;
        }
        ms += "#$";
        runManacher();
    }

    void runManacher() {
        int n = ms.Length;
        p = new int[n];
        int l = 0, r = 0;

        for (int i = 1; i < n - 1; ++i) {
            int mirror = l + r - i;
            if (mirror >= 0 && mirror < n)
                p[i] = Math.Max(0, Math.Min(r - i, p[mirror]));
            else
                p[i] = 0;

            // try expanding around center i
            while ((i + 1 + p[i]) < n && (i - 1 - p[i]) >= 0 &&
                   ms[i + 1 + p[i]] == ms[i - 1 - p[i]]) {
                ++p[i];
            }

            // update [l, r] if the new palindrome goes 
            // beyond current right boundary
            if (i + p[i] > r) {
                l = i - p[i];
                r = i + p[i];
            }
        }
    }

    // return the radius of the longest palindrome 
    // centered at original index 'cen'
    public int getLongest(int cen, int odd) {
        int pos = 2 * cen + 2 + (odd == 0 ? 1 : 0);
        return p[pos];
    }

    // checks whether the substring 
    // s[l..r] is a palindrome
    public bool check(int l, int r) {
        int res = getLongest((l + r) / 2, (r - l + 1) % 2);
        return (r - l + 1) <= res;
    }
}

class GfG {
    // finds and returns the longest 
    // palindromic substring in s
    public static string getLongestPal(string s) {
        int n = s.Length, maxLen = 1, start = 0;
        manacher M = new manacher(s);

        for (int i = 0; i < n; ++i) {
            int oddLen = M.getLongest(i, 1);
            if (oddLen > maxLen) {
                // update start for odd-length palindrome
                start = i - (oddLen - 1) / 2;
            }

            int evenLen = M.getLongest(i, 0);
            if (evenLen > maxLen) {
                // update start for even-length palindrome
                start = i - (evenLen - 1) / 2;
            }

            maxLen = Math.Max(maxLen, Math.Max(oddLen, evenLen));
        }

        return s.Substring(start, maxLen);
    }

    public static void Main(string[] args) {
        string s = "forgeeksskeegfor";
        Console.WriteLine(getLongestPal(s));
    }
}
JavaScript
class Mancjher {
    // p[i] stores the radius of the palindrome 
    // centered at position i in ms
    constructor(s) {
        this.ms = "@";
        for (let c of s) {
            this.ms += "#" + c;
        }
        this.ms += "#$"; // right sentinel
        this.p = new Array(this.ms.length).fill(0);
        this.runManacher();
    }

    runManacher() {
        let n = this.ms.length;
        let l = 0, r = 0;

        for (let i = 1; i < n - 1; ++i) {
            let mirror = l + r - i;
            if (mirror >= 0 && mirror < n) {
                this.p[i] = Math.max(0, Math.min(r - i, this.p[mirror]));
            } else {
                this.p[i] = 0;
            }

            // try expanding around center i
            while (
                (i + 1 + this.p[i]) < n &&
                (i - 1 - this.p[i]) >= 0 &&
                this.ms[i + 1 + this.p[i]] === this.ms[i - 1 - this.p[i]]
            ) {
                ++this.p[i];
            }

            // update [l, r] if new palindrome goes beyond right
            if (i + this.p[i] > r) {
                l = i - this.p[i];
                r = i + this.p[i];
            }
        }
    }

    // return the radius of the longest palindrome 
    // centered at original index 'cen'
    getLongest(cen, odd) {
        let pos = 2 * cen + 2 + (odd === 0 ? 1 : 0);
        return this.p[pos];
    }

    // checks whether the substring 
    // s[l..r] is a palindrome
    check(l, r) {
        let len = r - l + 1;
        return len <= this.getLongest((l + r) >> 1, len % 2);
    }
}


// finds and returns the longest 
// palindromic substring in s
function getLongestPal(s) {
    let n = s.length, maxLen = 1, start = 0;
    const M = new Mancjher(s);

    for (let i = 0; i < n; ++i) {
        let oddLen = M.getLongest(i, 1);
        if (oddLen > maxLen) {
            start = i - Math.floor((oddLen - 1) / 2);
        }

        let evenLen = M.getLongest(i, 0);
        if (evenLen > maxLen) {
            start = i - Math.floor((evenLen - 1) / 2);
        }

        maxLen = Math.max(maxLen, Math.max(oddLen, evenLen));
    }

    return s.substring(start, start + maxLen);
}


// Driver Code
const s = "forgeeksskeegfor";
console.log(getLongestPal(s)); 

Output
geeksskeeg

Longest Palindromic Substring

Similar Reads