Lexicographically first palindromic string
Last Updated :
13 Mar, 2023
Rearrange the characters of the given string to form a lexicographically first palindromic string. If no such string exists display message "no palindromic string". Examples:
Input : malayalam
Output : aalmymlaa
Input : apple
Output : no palindromic string
Simple Approach: 1. Sort the string characters in alphabetical(ascending) order. 2. One be one find lexicographically next permutation of the given string. 3. The first permutation which is palindrome is the answer.
Efficient Approach: Properties for palindromic string: 1. If length of string is even, then the frequency of each character in the string must be even. 2. If the length is odd then there should be one character whose frequency is odd and all other chars must have even frequency and at-least one occurrence of the odd character must be present in the middle of the string.
Algorithm 1. Store frequency of each character in the given string 2. Check whether a palindromic string can be formed or not using the properties of palindromic string mentioned above. 3. If palindromic string cannot be formed, return "No Palindromic String". 4. Else we create three strings and then return front_str + odd_str + rear_str.
- odd_str : It is empty if there is no character with odd frequency. Else it contains all occurrences of odd character.
- front_str : Contains half occurrences of all even occurring characters of string in increasing order.
- rear_str Contains half occurrences of all even occurring characters of string in reverse order of front_str.
Below is implementation of above steps.
C++
// C++ program to find first palindromic permutation
// of given string
#include <bits/stdc++.h>
using namespace std;
const char MAX_CHAR = 26;
// Function to count frequency of each char in the
// string. freq[0] for 'a',...., freq[25] for 'z'
void countFreq(string str, int freq[], int len)
{
for (int i=0; i<len; i++)
freq[str.at(i) - 'a']++;
}
// Cases to check whether a palindr0mic
// string can be formed or not
bool canMakePalindrome(int freq[], int len)
{
// count_odd to count no of
// chars with odd frequency
int count_odd = 0;
for (int i=0; i<MAX_CHAR; i++)
if (freq[i]%2 != 0)
count_odd++;
// For even length string
// no odd freq character
if (len%2 == 0)
{
if (count_odd > 0)
return false;
else
return true;
}
// For odd length string
// one odd freq character
if (count_odd != 1)
return false;
return true;
}
// Function to find odd freq char and
// reducing its freq by 1returns "" if odd freq
// char is not present
string findOddAndRemoveItsFreq(int freq[])
{
string odd_str = "";
for (int i=0; i<MAX_CHAR; i++)
{
if (freq[i]%2 != 0)
{
freq[i]--;
odd_str = odd_str + (char)(i+'a');
return odd_str;
}
}
return odd_str;
}
// To find lexicographically first palindromic
// string.
string findPalindromicString(string str)
{
int len = str.length();
int freq[MAX_CHAR] = {0};
countFreq(str, freq, len);
if (!canMakePalindrome(freq, len))
return "No Palindromic String";
// Assigning odd freq character if present
// else empty string.
string odd_str = findOddAndRemoveItsFreq(freq);
string front_str = "", rear_str = " ";
// Traverse characters in increasing order
for (int i=0; i<MAX_CHAR; i++)
{
string temp = "";
if (freq[i] != 0)
{
char ch = (char)(i + 'a');
// Divide all occurrences into two
// halves. Note that odd character
// is removed by findOddAndRemoveItsFreq()
for (int j=1; j<=freq[i]/2; j++)
temp = temp + ch;
// creating front string
front_str = front_str + temp;
// creating rear string
rear_str = temp + rear_str;
}
}
// Final palindromic string which is
// lexicographically first
return (front_str + odd_str + rear_str);
}
// Driver program
int main()
{
string str = "malayalam";
cout << findPalindromicString(str);
return 0;
}
Java
// Java program to find first palindromic permutation
// of given string
class GFG {
static char MAX_CHAR = 26;
// Function to count frequency of each char in the
// string. freq[0] for 'a',...., freq[25] for 'z'
static void countFreq(String str, int freq[], int len)
{
for (int i = 0; i < len; i++)
{
freq[str.charAt(i) - 'a']++;
}
}
// Cases to check whether a palindr0mic
// string can be formed or not
static boolean canMakePalindrome(int freq[], int len)
{
// count_odd to count no of
// chars with odd frequency
int count_odd = 0;
for (int i = 0; i < MAX_CHAR; i++)
{
if (freq[i] % 2 != 0)
{
count_odd++;
}
}
// For even length string
// no odd freq character
if (len % 2 == 0)
{
if (count_odd > 0)
{
return false;
}
else
{
return true;
}
}
// For odd length string
// one odd freq character
if (count_odd != 1)
{
return false;
}
return true;
}
// Function to find odd freq char and
// reducing its freq by 1returns "" if odd freq
// char is not present
static String findOddAndRemoveItsFreq(int freq[])
{
String odd_str = "";
for (int i = 0; i < MAX_CHAR; i++)
{
if (freq[i] % 2 != 0)
{
freq[i]--;
odd_str = odd_str + (char) (i + 'a');
return odd_str;
}
}
return odd_str;
}
// To find lexicographically first palindromic
// string.
static String findPalindromicString(String str)
{
int len = str.length();
int freq[] = new int[MAX_CHAR];
countFreq(str, freq, len);
if (!canMakePalindrome(freq, len))
{
return "No Palindromic String";
}
// Assigning odd freq character if present
// else empty string.
String odd_str = findOddAndRemoveItsFreq(freq);
String front_str = "", rear_str = " ";
// Traverse characters in increasing order
for (int i = 0; i < MAX_CHAR; i++)
{
String temp = "";
if (freq[i] != 0)
{
char ch = (char) (i + 'a');
// Divide all occurrences into two
// halves. Note that odd character
// is removed by findOddAndRemoveItsFreq()
for (int j = 1; j <= freq[i] / 2; j++)
{
temp = temp + ch;
}
// creating front string
front_str = front_str + temp;
// creating rear string
rear_str = temp + rear_str;
}
}
// Final palindromic string which is
// lexicographically first
return (front_str + odd_str + rear_str);
}
// Driver program
public static void main(String[] args)
{
String str = "malayalam";
System.out.println(findPalindromicString(str));
}
}
// This code is contributed by Rajput-Ji
Python3
# Python3 program to find first palindromic permutation
# of given string
MAX_CHAR = 26;
# Function to count frequency of each char in the
# string. freq[0] for 'a',...., freq[25] for 'z'
def countFreq(str1, freq, len1):
for i in range(len1):
freq[ord(str1[i]) - ord('a')] += 1;
# Cases to check whether a palindr0mic
# string can be formed or not
def canMakePalindrome(freq, len1):
# count_odd to count no of
# chars with odd frequency
count_odd = 0;
for i in range(MAX_CHAR):
if (freq[i] % 2 != 0):
count_odd += 1;
# For even length string
# no odd freq character
if (len1 % 2 == 0):
if (count_odd > 0):
return False;
else:
return True;
# For odd length string
# one odd freq character
if (count_odd != 1):
return False;
return True;
# Function to find odd freq char and
# reducing its freq by 1returns "" if odd freq
# char is not present
def findOddAndRemoveItsFreq(freq):
odd_str = "";
for i in range(MAX_CHAR):
if (freq[i]%2 != 0):
freq[i]-=1;
odd_str += chr(i+ord('a'));
return odd_str;
return odd_str;
# To find lexicographically first palindromic
# string.
def findPalindromicString(str1):
len1 = len(str1);
freq=[0]*MAX_CHAR;
countFreq(str1, freq, len1);
if (canMakePalindrome(freq, len1) == False):
return "No Palindromic String";
# Assigning odd freq character if present
# else empty string.
odd_str = findOddAndRemoveItsFreq(freq);
front_str = "";
rear_str = " ";
# Traverse characters in increasing order
for i in range(MAX_CHAR):
temp = "";
if (freq[i] != 0):
ch = chr(i + ord('a'));
# Divide all occurrences into two
# halves. Note that odd character
# is removed by findOddAndRemoveItsFreq()
for j in range(1,int(freq[i]/2)+1):
temp += ch;
# creating front string
front_str += temp;
# creating rear string
rear_str = temp+rear_str;
# Final palindromic string which is
# lexicographically first
return (front_str + odd_str+rear_str);
# Driver code
str1 = "malayalam";
print(findPalindromicString(str1));
# This code is contributed by mits
C#
// C# program to find first palindromic permutation
// of given string
using System;
class GFG
{
static int MAX_CHAR = 26;
// Function to count frequency of each char in the
// string. freq[0] for 'a',...., freq[25] for 'z'
static void countFreq(string str, int[] freq, int len)
{
for (int i = 0; i < len; i++)
{
freq[str[i] - 'a']++;
}
}
// Cases to check whether a palindr0mic
// string can be formed or not
static bool canMakePalindrome(int[] freq, int len)
{
// count_odd to count no of
// chars with odd frequency
int count_odd = 0;
for (int i = 0; i < MAX_CHAR; i++)
{
if (freq[i] % 2 != 0)
{
count_odd++;
}
}
// For even length string
// no odd freq character
if (len % 2 == 0)
{
if (count_odd > 0)
{
return false;
}
else
{
return true;
}
}
// For odd length string
// one odd freq character
if (count_odd != 1)
{
return false;
}
return true;
}
// Function to find odd freq char and
// reducing its freq by 1returns "" if odd freq
// char is not present
static string findOddAndRemoveItsFreq(int[] freq)
{
string odd_str = "";
for (int i = 0; i < MAX_CHAR; i++)
{
if (freq[i] % 2 != 0)
{
freq[i]--;
odd_str = odd_str + (char) (i + 'a');
return odd_str;
}
}
return odd_str;
}
// To find lexicographically first
// palindromic string.
static string findPalindromicString(string str)
{
int len = str.Length;
int[] freq = new int[MAX_CHAR];
countFreq(str, freq, len);
if (!canMakePalindrome(freq, len))
{
return "No Palindromic String";
}
// Assigning odd freq character if present
// else empty string.
string odd_str = findOddAndRemoveItsFreq(freq);
string front_str = "", rear_str = " ";
// Traverse characters in increasing order
for (int i = 0; i < MAX_CHAR; i++)
{
String temp = "";
if (freq[i] != 0)
{
char ch = (char) (i + 'a');
// Divide all occurrences into two
// halves. Note that odd character
// is removed by findOddAndRemoveItsFreq()
for (int j = 1; j <= freq[i] / 2; j++)
{
temp = temp + ch;
}
// creating front string
front_str = front_str + temp;
// creating rear string
rear_str = temp + rear_str;
}
}
// Final palindromic string which is
// lexicographically first
return (front_str + odd_str + rear_str);
}
// Driver code
public static void Main()
{
string str = "malayalam";
Console.Write(findPalindromicString(str));
}
}
// This code is contributed by Ita_c.
PHP
<?php
// PHP program to find first palindromic permutation
// of given string
$MAX_CHAR = 26;
// Function to count frequency of each char in the
// string. freq[0] for 'a',...., freq[25] for 'z'
function countFreq($str, &$freq, $len)
{
for ($i = 0; $i < $len; $i++)
$freq[ord($str[$i]) - ord('a')]++;
}
// Cases to check whether a palindr0mic
// string can be formed or not
function canMakePalindrome($freq, $len)
{
global $MAX_CHAR;
// count_odd to count no of
// chars with odd frequency
$count_odd = 0;
for ($i = 0; $i < $MAX_CHAR; $i++)
if ($freq[$i] % 2 != 0)
$count_odd++;
// For even length string
// no odd freq character
if ($len % 2 == 0)
{
if ($count_odd > 0)
return false;
else
return true;
}
// For odd length string
// one odd freq character
if ($count_odd != 1)
return false;
return true;
}
// Function to find odd freq char and
// reducing its freq by 1returns "" if odd freq
// char is not present
function findOddAndRemoveItsFreq($freq)
{
global $MAX_CHAR;
$odd_str = "";
for ($i = 0; $i < $MAX_CHAR; $i++)
{
if ($freq[$i] % 2 != 0)
{
$freq[$i]--;
$odd_str .= chr($i+ord('a'));
return $odd_str;
}
}
return $odd_str;
}
// To find lexicographically first palindromic
// string.
function findPalindromicString($str)
{
global $MAX_CHAR;
$len = strlen($str);
$freq=array_fill(0, $MAX_CHAR, 0);
countFreq($str, $freq, $len);
if (!canMakePalindrome($freq, $len))
return "No Palindromic String";
// Assigning odd freq character if present
// else empty string.
$odd_str = findOddAndRemoveItsFreq($freq);
$front_str = "";
$rear_str = " ";
// Traverse characters in increasing order
for ($i = 0; $i < $MAX_CHAR; $i++)
{
$temp = "";
if ($freq[$i] != 0)
{
$ch = chr($i + ord('a'));
// Divide all occurrences into two
// halves. Note that odd character
// is removed by findOddAndRemoveItsFreq()
for ($j = 1; $j <= (int)($freq[$i]/2); $j++)
$temp .= $ch;
// creating front string
$front_str .= $temp;
// creating rear string
$rear_str = $temp.$rear_str;
}
}
// Final palindromic string which is
// lexicographically first
return ($front_str.$odd_str.$rear_str);
}
// Driver code
$str = "malayalam";
echo findPalindromicString($str);
// This code is contributed by mits
?>
JavaScript
// JavaScript program to find first palindromic permutation
// of given string
const MAX_CHAR = 26;
// Function to count frequency of each char in the
// string. freq[0] for 'a',...., freq[25] for 'z'
function countFreq(str, freq, len) {
for (let i = 0; i < len; i++) {
freq[str.charCodeAt(i) - 'a'.charCodeAt()]++;
}
}
// Cases to check whether a palindr0mic
// string can be formed or not
function canMakePalindrome(freq, len) {
// count_odd to count no of
// chars with odd frequency
let count_odd = 0;
for (let i = 0; i < MAX_CHAR; i++) {
if (freq[i] % 2 !== 0) {
count_odd++;
}
}
// For even length string
// no odd freq character
if (len % 2 === 0) {
if (count_odd > 0) {
return false;
} else {
return true;
}
}
// For odd length string
// one odd freq character
if (count_odd !== 1) {
return false;
}
return true;
}
// Function to find odd freq char and
// reducing its freq by 1returns "" if odd freq
// char is not present
function findOddAndRemoveItsFreq(freq) {
let odd_str = "";
for (let i = 0; i < MAX_CHAR; i++) {
if (freq[i] % 2 !== 0) {
freq[i]--;
odd_str = odd_str + String.fromCharCode(i + 'a'.charCodeAt());
return odd_str;
}
}
return odd_str;
}
// To find lexicographically first
// palindromic string.
function findPalindromicString(str) {
const len = str.length;
const freq = new Array(MAX_CHAR).fill(0);
countFreq(str, freq, len);
if (!canMakePalindrome(freq, len)) {
return "No Palindromic String";
}
// Assigning odd freq character if present
// else empty string.
let odd_str = findOddAndRemoveItsFreq(freq);
let front_str = "",
rear_str = " ";
// Traverse characters in increasing order
for (let i = 0; i < MAX_CHAR; i++) {
let temp = "";
if (freq[i] !== 0) {
const ch = String.fromCharCode(i + 'a'.charCodeAt());
// Divide all occurrences into two
// halves. Note that odd character
// is removed by findOddAndRemoveItsFreq()
for (let j = 1; j <= freq[i] / 2; j++) {
temp = temp + ch;
}
// creating front string
front_str = front_str + temp;
// creating rear string
rear_str = temp + rear_str;
}
}
// Final palindromic string which is
// lexicographically first
return (front_str + odd_str + rear_str);
}
// Driver code
const str = "malayalam";
console.log(findPalindromicString(str));
// This code is contributed by phasing17.
Time Complexity : O(n) where n is length of input string. Assuming that size of string alphabet is constant.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem