Iterative Preorder Traversal
Last Updated :
23 Jul, 2025
Given a binary tree, write an iterative function to print the Preorder traversal of the tree. The Preorder traversal follows the order: Root → Left → Right.
Examples:
Input:
1
/ \
2 3
/ \
4 5
Output: 1 2 4 5 3
Explanation: Preorder traversal (Root->Left->Right) of the tree is 1 2 4 5 3.
Input:
8
/ \
1 5
\ / \
7 10 6
\ /
10 6
Output: 8 1 7 10 5 10 6 6
Explanation:
Preorder traversal (Root->Left->Right) of the tree is 8 1 7 10 5 10 6 6.
[Naive Approach] Simple Iterative Preorder (with stack) - O(n) time and O(n) space
Following is a simple stack based iterative process to print Preorder traversal.
- Create an empty stack and push root node to stack.
- Do the following while is not empty.
- Pop an item from the stack and print it.
- Push right child of a popped item to stack
- Push left child of a popped item to stack
The right child is pushed before the left child to make sure that the left subtree is processed first.
C++
#include <iostream>
#include <vector>
#include <stack>
using namespace std;
struct Node {
int data;
Node* left;
Node* right;
Node(int x) {
data = x;
left = right = nullptr;
}
};
vector<int> preOrder(Node* root) {
vector<int> res;
if (root == nullptr)
return res;
stack<Node*> s;
s.push(root);
while (!s.empty()) {
Node* curr = s.top();
s.pop();
res.push_back(curr->data);
if (curr->right != nullptr)
s.push(curr->right);
if (curr->left != nullptr)
s.push(curr->left);
}
return res;
}
int main() {
Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
vector<int> preorder = preOrder(root);
for (int val : preorder) {
cout << val << " ";
}
cout << endl;
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
class Node {
int data;
Node left, right;
Node(int data) {
this.data = data;
left = right = null;
}
}
public class GfG {
public static List<Integer> preOrder(Node root) {
List<Integer> res = new ArrayList<>();
if (root == null)
return res;
Stack<Node> s = new Stack<>();
s.push(root);
while (!s.isEmpty()) {
Node curr = s.pop();
res.add(curr.data);
if (curr.right != null)
s.push(curr.right);
if (curr.left != null)
s.push(curr.left);
}
return res;
}
public static void main(String[] args) {
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
List<Integer> preorder = preOrder(root);
for (int val : preorder) {
System.out.print(val + " ");
}
System.out.println();
}
}
Python
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
def preOrder(root):
res = []
if root is None:
return res
stack = [root]
while stack:
curr = stack.pop()
res.append(curr.data)
if curr.right:
stack.append(curr.right)
if curr.left:
stack.append(curr.left)
return res
if __name__ == '__main__':
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
preorder = preOrder(root)
print(' '.join(map(str, preorder)))
C#
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int data) {
this.data = data;
left = right = null;
}
}
class GfG {
public static List<int> PreOrder(Node root) {
List<int> res = new List<int>();
if (root == null)
return res;
Stack<Node> s = new Stack<Node>();
s.Push(root);
while (s.Count > 0) {
Node curr = s.Pop();
res.Add(curr.data);
if (curr.right != null)
s.Push(curr.right);
if (curr.left != null)
s.Push(curr.left);
}
return res;
}
static void Main(string[] args) {
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
List<int> preorder = PreOrder(root);
Console.WriteLine(string.Join(" ", preorder));
}
}
JavaScript
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
function preOrder(root) {
const res = [];
if (root === null)
return res;
const stack = [root];
while (stack.length > 0) {
const curr = stack.pop();
res.push(curr.data);
if (curr.right)
stack.push(curr.right);
if (curr.left)
stack.push(curr.left);
}
return res;
}
const root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
const preorder = preOrder(root);
console.log(preorder.join(' '));
[Better Approach] Iterative Preorder with Current Pointer (with stack) - O(n) time and O(n) space
In the previous solution we can see that the left child is popped as soon as it is pushed to the stack, therefore it is not required to push it into the stack.
The idea is to start traversing the tree from the root node and keep printing the left child while exists and simultaneously, push the right child of every node in an auxiliary stack. Once we reach a null node, pop a right child from the auxiliary stack and repeat the process while the auxiliary stack is not empty.
C++
#include <iostream>
#include <stack>
#include <vector>
using namespace std;
struct Node {
int data;
Node *left, *right;
Node(int data)
{
this->data = data;
this->left = this->right = nullptr;
}
};
vector<int> preOrder(Node* root)
{
vector<int> res;
if (root == NULL)
return res;
stack<Node*> s;
Node* curr = root;
while (!s.empty() || curr != NULL) {
while (curr != NULL) {
res.push_back(curr->data);
if (curr->right)
s.push(curr->right);
curr = curr->left;
}
if (!s.empty()) {
curr = s.top();
s.pop();
}
}
return res;
}
int main()
{
Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
vector<int> res = preOrder(root);
for (int x : res) {
cout << x << " ";
}
cout << endl;
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
class Node {
int data;
Node left, right;
Node(int data) {
this.data = data;
this.left = this.right = null;
}
}
public class GfG {
static List<Integer> preOrder(Node root) {
List<Integer> res = new ArrayList<>();
if (root == null) return res;
Stack<Node> s = new Stack<>();
Node curr = root;
while (!s.isEmpty() || curr != null) {
while (curr != null) {
res.add(curr.data);
if (curr.right != null) s.push(curr.right);
curr = curr.left;
}
if (!s.isEmpty()) {
curr = s.pop();
}
}
return res;
}
public static void main(String[] args) {
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
List<Integer> res = preOrder(root);
for (int x : res) {
System.out.print(x + " ");
}
System.out.println();
}
}
Python
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
def preOrder(root):
res = []
if root is None:
return res
stack = []
curr = root
while stack or curr:
while curr:
res.append(curr.data)
if curr.right:
stack.append(curr.right)
curr = curr.left
if stack:
curr = stack.pop()
return res
if __name__ == '__main__':
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
res = preOrder(root)
print(' '.join(map(str, res)))
C#
using System;
using System.Collections.Generic;
using System.Collections;
class Node {
public int data;
public Node left, right;
public Node(int data) {
this.data = data;
this.left = this.right = null;
}
}
public class GfG {
static List<int> PreOrder(Node root) {
List<int> res = new List<int>();
if (root == null) return res;
Stack<Node> s = new Stack<Node>();
Node curr = root;
while (s.Count > 0 || curr != null) {
while (curr != null) {
res.Add(curr.data);
if (curr.right != null) s.Push(curr.right);
curr = curr.left;
}
if (s.Count > 0) {
curr = s.Pop();
}
}
return res;
}
public static void Main(string[] args) {
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
List<int> res = PreOrder(root);
foreach (int x in res) {
Console.Write(x + " ");
}
Console.WriteLine();
}
}
JavaScript
// Node structure
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
function preOrder(root) {
const res = [];
if (root === null) return res;
const s = [];
let curr = root;
while (s.length > 0 || curr !== null) {
while (curr !== null) {
res.push(curr.data);
if (curr.right) s.push(curr.right);
curr = curr.left;
}
if (s.length > 0) {
curr = s.pop();
}
}
return res;
}
// Example usage
const root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
const res = preOrder(root);
console.log(res.join(' '));
[Expected Approach] Preorder Morris Traversal - O(n) time and O(1) space
Morris Traversal is a tree traversal technique that allows you to traverse a binary tree without using recursion or a stack. The Preorder Morris Traversal algorithm works by manipulating the tree's pointers, specifically by utilizing the inorder predecessor of each node.
Algorithm for Preorder Morris Traversal:
1. If the left child of the current node is NULL:
- Print the current node's data (since it is the root of the subtree).
- Move to the right child of the current node.
2. If the left child of the current node is NOT NULL:
- Find the inorder predecessor of the current node: The inorder predecessor is the rightmost node of the left subtree of the current node.
Two cases arise:
a) The right child of the inorder predecessor already points to the current node:
- This means we've already visited this node, so we can set the right child of the inorder predecessor to NULL.
- Move to the right child of the current node.
b) The right child of the inorder predecessor is NULL:
- Set the right child of the inorder predecessor to point to the current node.
- Print the current node's data.
- Move to the left child of the current node (this is the new node to visit next).
3. Repeat the process until the current node is NULL.
C++
#include <iostream>
#include <vector>
using namespace std;
struct Node {
int data;
Node* left;
Node* right;
Node(int item) {
data = item;
left = right = nullptr;
}
};
vector<int> morrisPreOrder(Node* node) {
vector<int> res;
while (node != nullptr) {
if (node->left == nullptr) {
res.push_back(node->data);
node = node->right;
} else {
Node* curr = node->left;
while (curr->right != nullptr && curr->right != node) {
curr = curr->right;
}
if (curr->right == node) {
curr->right = nullptr;
node = node->right;
} else {
res.push_back(node->data);
curr->right = node;
node = node->left;
}
}
}
return res;
}
int main() {
Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
vector<int> res = morrisPreOrder(root);
for (int value : res) {
cout << value << " ";
}
cout << endl;
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
class Node {
int data;
Node left, right;
Node(int item) {
data = item;
left = right = null;
}
}
public class MorrisPreorder {
public static List<Integer> morrisPreOrder(Node node) {
List<Integer> result = new ArrayList<>();
while (node != null) {
if (node.left == null) {
result.add(node.data);
node = node.right;
} else {
Node current = node.left;
while (current.right != null && current.right != node) {
current = current.right;
}
if (current.right == node) {
current.right = null;
node = node.right;
} else {
result.add(node.data);
current.right = node;
node = node.left;
}
}
}
return result;
}
public static void main(String[] args) {
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
List<Integer> morrisResult = morrisPreOrder(root);
for (int value : morrisResult) {
System.out.print(value + " ");
}
System.out.println();
}
}
Python
class Node:
def __init__(self, item):
self.data = item
self.left = None
self.right = None
def morrisPreorder(node):
result = []
while node:
if node.left is None:
result.append(node.data)
node = node.right
else:
current = node.left
while current.right and current.right != node:
current = current.right
if current.right == node:
current.right = None
node = node.right
else:
result.append(node.data)
current.right = node
node = node.left
return result
if __name__ == '__main__':
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
morris_result = morrisPreorder(root)
print(' '.join(map(str, morris_result)))
C#
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int item) {
data = item;
left = right = null;
}
}
class MorrisPreorder {
public static List<int> MorrisPreOrder(Node node) {
List<int> result = new List<int>();
while (node != null) {
if (node.left == null) {
result.Add(node.data);
node = node.right;
} else {
Node current = node.left;
while (current.right != null && current.right != node) {
current = current.right;
}
if (current.right == node) {
current.right = null;
node = node.right;
} else {
result.Add(node.data);
current.right = node;
node = node.left;
}
}
}
return result;
}
public static void Main() {
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
List<int> morrisResult = MorrisPreOrder(root);
foreach (int value in morrisResult) {
Console.Write(value + " ");
}
Console.WriteLine();
}
}
JavaScript
class Node {
constructor(item) {
this.data = item;
this.left = null;
this.right = null;
}
}
function morrisPreOrder(node) {
const result = [];
while (node) {
if (node.left === null) {
result.push(node.data);
node = node.right;
} else {
let current = node.left;
while (current.right !== null && current.right !== node) {
current = current.right;
}
if (current.right === node) {
current.right = null;
node = node.right;
} else {
result.push(node.data);
current.right = node;
node = node.left;
}
}
}
return result;
}
const root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
const morrisResult = morrisPreOrder(root);
console.log(morrisResult.join(' '));
Refer Preorder Traversal of Binary Tree for recursive code
Iterative Preorder Traversal
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem