Inversion count in Array using BIT
Last Updated :
23 Jul, 2025
Inversion Count for an array indicates – how far (or close) the array is from being sorted. If the array is already sorted then the inversion count is 0. If the array is sorted in the reverse order that inversion count is the maximum.
Two elements a[i] and a[j] form an inversion if a[i] > a[j] and i < j. For simplicity, we may assume that all elements are unique.
Example:
Input: arr[] = {8, 4, 2, 1}
Output: 6
Explanation: Given array has six inversions: (8,4), (4,2), (8,2), (8,1), (4,1), (2,1).
Input: arr[] = {3, 1, 2}
Output: 2
Explanation: Given array has two inversions: (3,1), (3,2).
We have already discussed the below methods to solve inversion count:
- Naive and Modified Merge Sort
- Using AVL Tree
We recommend you to refer Binary Indexed Tree (BIT) before further reading this post.
Solution using BIT of size Θ(maxElement):
- Approach: Traverse through the array and for every index find the number of smaller elements on the right side of the array. This can be done using BIT. Sum up the counts for all indexes in the array and print the sum.
- Background on BIT:
- BIT basically supports two operations for an array arr[] of size n:
- Sum of elements till arr[i] in O(log n) time.
- Update an array element in O(log n) time.
- BIT is implemented using an array and works in form of trees. Note that there are two ways of looking at BIT as a tree.
- The sum operation where parent of index x is "x - (x & -x)".
- The update operation where parent of index x is "x + (x & -x)".
- Algorithm:
- Create a BIT, to find the count of the smaller elements in the BIT for a given number and also a variable result = 0.
- Traverse the array from end to start.
- For every index check how many numbers less than the current element are present in BIT and add it to the result
- To get the count of smaller elements, getSum() of BIT is used.
- In his basic idea, BIT is represented as an array of size equal to maximum element plus one. So that elements can be used as an index.
- After that we add the current element to the BIT[] by doing an update operation that updates the count of the current element from 0 to 1, and therefore updates ancestors of the current element in BIT (See update() in BIT for details).
Below is the implementation of the above approach:
C++
// C++ program to count inversions using Binary Indexed Tree
#include<bits/stdc++.h>
using namespace std;
// Returns sum of arr[0..index]. This function assumes
// that the array is preprocessed and partial sums of
// array elements are stored in BITree[].
int getSum(int BITree[], int index)
{
int sum = 0; // Initialize result
// Traverse ancestors of BITree[index]
while (index > 0)
{
// Add current element of BITree to sum
sum += BITree[index];
// Move index to parent node in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index Tree (BITree) at given index
// in BITree. The given value 'val' is added to BITree[i] and
// all of its ancestors in tree.
void updateBIT(int BITree[], int n, int index, int val)
{
// Traverse all ancestors and add 'val'
while (index <= n)
{
// Add 'val' to current node of BI Tree
BITree[index] += val;
// Update index to that of parent in update View
index += index & (-index);
}
}
// Returns inversion count arr[0..n-1]
int getInvCount(int arr[], int n)
{
int invcount = 0; // Initialize result
// Find maximum element in arr[]
int maxElement = 0;
for (int i=0; i<n; i++)
if (maxElement < arr[i])
maxElement = arr[i];
// Create a BIT with size equal to maxElement+1 (Extra
// one is used so that elements can be directly be
// used as index)
int BIT[maxElement+1];
for (int i=1; i<=maxElement; i++)
BIT[i] = 0;
// Traverse all elements from right.
for (int i=n-1; i>=0; i--)
{
// Get count of elements smaller than arr[i]
invcount += getSum(BIT, arr[i]-1);
// Add current element to BIT
updateBIT(BIT, maxElement, arr[i], 1);
}
return invcount;
}
// Driver program
int main()
{
int arr[] = {8, 4, 2, 1};
int n = sizeof(arr)/sizeof(int);
cout << "Number of inversions are : " << getInvCount(arr,n);
return 0;
}
Java
// Java program to count inversions
// using Binary Indexed Tree
class GFG
{
// Returns sum of arr[0..index].
// This function assumes that the
// array is preprocessed and partial
// sums of array elements are stored
// in BITree[].
static int getSum(int[] BITree, int index)
{
int sum = 0; // Initialize result
// Traverse ancestors of BITree[index]
while (index > 0)
{
// Add current element of BITree to sum
sum += BITree[index];
// Move index to parent node in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index
// Tree (BITree) at given index
// in BITree. The given value 'val'
// is added to BITree[i] and all
// of its ancestors in tree.
static void updateBIT(int[] BITree, int n,
int index, int val)
{
// Traverse all ancestors and add 'val'
while (index <= n)
{
// Add 'val' to current node of BI Tree
BITree[index] += val;
// Update index to that of parent in update View
index += index & (-index);
}
}
// Returns inversion count arr[0..n-1]
static int getInvCount(int[] arr, int n)
{
int invcount = 0; // Initialize result
// Find maximum element in arr[]
int maxElement = 0;
for (int i = 0; i < n; i++)
if (maxElement < arr[i])
maxElement = arr[i];
// Create a BIT with size equal to
// maxElement+1 (Extra one is used so
// that elements can be directly be
// used as index)
int[] BIT = new int[maxElement + 1];
for (int i = 1; i <= maxElement; i++)
BIT[i] = 0;
// Traverse all elements from right.
for (int i = n - 1; i >= 0; i--)
{
// Get count of elements smaller than arr[i]
invcount += getSum(BIT, arr[i] - 1);
// Add current element to BIT
updateBIT(BIT, maxElement, arr[i], 1);
}
return invcount;
}
// Driver code
public static void main (String[] args)
{
int []arr = {8, 4, 2, 1};
int n = arr.length;
System.out.println("Number of inversions are : " +
getInvCount(arr,n));
}
}
// This code is contributed by mits
Python3
# Python3 program to count inversions using
# Binary Indexed Tree
# Returns sum of arr[0..index]. This function
# assumes that the array is preprocessed and
# partial sums of array elements are stored
# in BITree[].
def getSum( BITree, index):
sum = 0 # Initialize result
# Traverse ancestors of BITree[index]
while (index > 0):
# Add current element of BITree to sum
sum += BITree[index]
# Move index to parent node in getSum View
index -= index & (-index)
return sum
# Updates a node in Binary Index Tree (BITree)
# at given index in BITree. The given value
# 'val' is added to BITree[i] and all of its
# ancestors in tree.
def updateBIT(BITree, n, index, val):
# Traverse all ancestors and add 'val'
while (index <= n):
# Add 'val' to current node of BI Tree
BITree[index] += val
# Update index to that of parent
# in update View
index += index & (-index)
# Returns count of inversions of size three
def getInvCount(arr, n):
invcount = 0 # Initialize result
# Find maximum element in arrays
maxElement = max(arr)
# Create a BIT with size equal to
# maxElement+1 (Extra one is used
# so that elements can be directly
# be used as index)
BIT = [0] * (maxElement + 1)
for i in range(n - 1, -1, -1):
invcount += getSum(BIT, arr[i] - 1)
updateBIT(BIT, maxElement, arr[i], 1)
return invcount
# Driver code
if __name__ =="__main__":
arr = [8, 4, 2, 1]
n = 4
print("Inversion Count : ",
getInvCount(arr, n))
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)
C#
// C# program to count inversions
// using Binary Indexed Tree
using System;
class GFG
{
// Returns sum of arr[0..index].
// This function assumes that the
// array is preprocessed and partial
// sums of array elements are stored
// in BITree[].
static int getSum(int []BITree, int index)
{
int sum = 0; // Initialize result
// Traverse ancestors of BITree[index]
while (index > 0)
{
// Add current element of BITree to sum
sum += BITree[index];
// Move index to parent node in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index
// Tree (BITree) at given index
// in BITree. The given value 'val'
// is added to BITree[i] and all
// of its ancestors in tree.
static void updateBIT(int []BITree, int n,
int index, int val)
{
// Traverse all ancestors and add 'val'
while (index <= n)
{
// Add 'val' to current node of BI Tree
BITree[index] += val;
// Update index to that of parent in update View
index += index & (-index);
}
}
// Returns inversion count arr[0..n-1]
static int getInvCount(int []arr, int n)
{
int invcount = 0; // Initialize result
// Find maximum element in arr[]
int maxElement = 0;
for (int i = 0; i < n; i++)
if (maxElement < arr[i])
maxElement = arr[i];
// Create a BIT with size equal to
// maxElement+1 (Extra one is used so
// that elements can be directly be
// used as index)
int[] BIT = new int[maxElement + 1];
for (int i = 1; i <= maxElement; i++)
BIT[i] = 0;
// Traverse all elements from right.
for (int i = n - 1; i >= 0; i--)
{
// Get count of elements smaller than arr[i]
invcount += getSum(BIT, arr[i] - 1);
// Add current element to BIT
updateBIT(BIT, maxElement, arr[i], 1);
}
return invcount;
}
// Driver code
static void Main()
{
int []arr = {8, 4, 2, 1};
int n = arr.Length;
Console.WriteLine("Number of inversions are : " +
getInvCount(arr,n));
}
}
// This code is contributed by mits
JavaScript
<script>
// javascript program to count inversions
// using Binary Indexed Tree
// Returns sum of arr[0..index].
// This function assumes that the
// array is preprocessed and partial
// sums of array elements are stored
// in BITree.
function getSum(BITree , index)
{
var sum = 0; // Initialize result
// Traverse ancestors of BITree[index]
while (index > 0)
{
// Add current element of BITree to sum
sum += BITree[index];
// Move index to parent node in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index
// Tree (BITree) at given index
// in BITree. The given value 'val'
// is added to BITree[i] and all
// of its ancestors in tree.
function updateBIT(BITree , n, index , val)
{
// Traverse all ancestors and add 'val'
while (index <= n)
{
// Add 'val' to current node of BI Tree
BITree[index] += val;
// Update index to that of parent in update View
index += index & (-index);
}
}
// Returns inversion count arr[0..n-1]
function getInvCount(arr , n)
{
var invcount = 0; // Initialize result
// Find maximum element in arr
var maxElement = 0;
for (i = 0; i < n; i++)
if (maxElement < arr[i])
maxElement = arr[i];
// Create a BIT with size equal to
// maxElement+1 (Extra one is used so
// that elements can be directly be
// used as index)
var BIT = Array.from({length: maxElement + 1}, (_, i) => 0);
for (i = 1; i <= maxElement; i++)
BIT[i] = 0;
// Traverse all elements from right.
for (i = n - 1; i >= 0; i--)
{
// Get count of elements smaller than arr[i]
invcount += getSum(BIT, arr[i] - 1);
// Add current element to BIT
updateBIT(BIT, maxElement, arr[i], 1);
}
return invcount;
}
// Driver code
var arr = [8, 4, 2, 1];
var n = arr.length;
document.write("Number of inversions are : " +
getInvCount(arr,n));
// This code is contributed by Amit Katiyar
</script>
PHP
<?php
// PHP program to count inversions
// using Binary Indexed Tree
// Returns sum of arr[0..index].
// This function assumes that the
// array is preprocessed and partial
// sums of array elements are stored
// in BITree[].
function getSum($BITree, $index)
{
$sum = 0; // Initialize result
// Traverse ancestors of BITree[index]
while ($index > 0)
{
// Add current element of BITree to sum
$sum += $BITree[$index];
// Move index to parent node in getSum View
$index -= $index & (-$index);
}
return $sum;
}
// Updates a node in Binary Index
// Tree (BITree) at given index
// in BITree. The given value 'val'
// is added to BITree[i] and
// all of its ancestors in tree.
function updateBIT(&$BITree, $n, $index,$val)
{
// Traverse all ancestors and add 'val'
while ($index <= $n)
{
// Add 'val' to current node of BI Tree
$BITree[$index] += $val;
// Update index to that of
// parent in update View
$index += $index & (-$index);
}
}
// Returns inversion count arr[0..n-1]
function getInvCount($arr, $n)
{
$invcount = 0; // Initialize result
// Find maximum element in arr[]
$maxElement = 0;
for ($i=0; $i<$n; $i++)
if ($maxElement < $arr[$i])
$maxElement = $arr[$i];
// Create a BIT with size equal
// to maxElement+1 (Extra one is
// used so that elements can be
// directly be used as index)
$BIT=array_fill(0,$maxElement+1,0);
// Traverse all elements from right.
for ($i=$n-1; $i>=0; $i--)
{
// Get count of elements smaller than arr[i]
$invcount += getSum($BIT, $arr[$i]-1);
// Add current element to BIT
updateBIT($BIT, $maxElement, $arr[$i], 1);
}
return $invcount;
}
// Driver program
$arr = array(8, 4, 2, 1);
$n = count($arr);
print("Number of inversions are : ".getInvCount($arr,$n));
// This code is contributed by mits
?>
OutputNumber of inversions are : 6
Time Complexity :- The update function and getSum function runs for O(log(maximumelement)). The getSum function has to be run for every element in the array. So overall time complexity is : O(nlog(maximumelement)).
Auxiliary space : O(maxElement), space required for the BIT is an array of the size of the largest element.
Better solution using BIT of size Θ(n):
Approach: Traverse through the array and for every index find the number of smaller elements on its right side of the array. This can be done using BIT. Sum up the counts for all indexes in the array and print the sum. The approach remains the same but the problem with the previous approach is that it doesn't work for negative numbers as the index cannot be negative. The idea is to convert the given array to an array with values from 1 to n and the relative order of smaller and greater elements remains the same.
Example:
arr[] = {7, -90, 100, 1}
It gets converted to,
arr[] = {3, 1, 4 ,2 }
as -90 < 1 < 7 < 100.
Explanation: Make a BIT array of a number of
elements instead of a maximum element. Changing
element will not have any change in the answer
as the greater elements remain greater and at the
same position.
Algorithm:
- Create a BIT, to find the count of the smaller elements in the BIT for a given number and also a variable result = 0.
- The previous solution does not work for arrays containing negative elements. So, convert the array into an array containing relative numbering of elements,i.e make a copy of the original array and then sort the copy of the array and replace the elements in the original array with the indices of the same elements in the sorted array.
For example, if the array is {-3, 2, 0} then the array gets converted to {1, 3, 2} - Traverse the array from end to start.
- For every index check how many numbers less than the current element are present in BIT and add it to the result
Below is the implementation of the above approach:
C++
// C++ program to count inversions using Binary Indexed Tree
#include<bits/stdc++.h>
using namespace std;
// Returns sum of arr[0..index]. This function assumes
// that the array is preprocessed and partial sums of
// array elements are stored in BITree[].
int getSum(int BITree[], int index)
{
int sum = 0; // Initialize result
// Traverse ancestors of BITree[index]
while (index > 0)
{
// Add current element of BITree to sum
sum += BITree[index];
// Move index to parent node in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index Tree (BITree) at given index
// in BITree. The given value 'val' is added to BITree[i] and
// all of its ancestors in tree.
void updateBIT(int BITree[], int n, int index, int val)
{
// Traverse all ancestors and add 'val'
while (index <= n)
{
// Add 'val' to current node of BI Tree
BITree[index] += val;
// Update index to that of parent in update View
index += index & (-index);
}
}
// Converts an array to an array with values from 1 to n
// and relative order of smaller and greater elements remains
// same. For example, {7, -90, 100, 1} is converted to
// {3, 1, 4 ,2 }
void convert(int arr[], int n)
{
// Create a copy of arrp[] in temp and sort the temp array
// in increasing order
int temp[n];
for (int i=0; i<n; i++)
temp[i] = arr[i];
sort(temp, temp+n);
// Traverse all array elements
for (int i=0; i<n; i++)
{
// lower_bound() Returns pointer to the first element
// greater than or equal to arr[i]
arr[i] = lower_bound(temp, temp+n, arr[i]) - temp + 1;
}
}
// Returns inversion count arr[0..n-1]
int getInvCount(int arr[], int n)
{
int invcount = 0; // Initialize result
// Convert arr[] to an array with values from 1 to n and
// relative order of smaller and greater elements remains
// same. For example, {7, -90, 100, 1} is converted to
// {3, 1, 4 ,2 }
convert(arr, n);
// Create a BIT with size equal to maxElement+1 (Extra
// one is used so that elements can be directly be
// used as index)
int BIT[n+1];
for (int i=1; i<=n; i++)
BIT[i] = 0;
// Traverse all elements from right.
for (int i=n-1; i>=0; i--)
{
// Get count of elements smaller than arr[i]
invcount += getSum(BIT, arr[i]-1);
// Add current element to BIT
updateBIT(BIT, n, arr[i], 1);
}
return invcount;
}
// Driver program
int main()
{
int arr[] = {8, 4, 2, 1};
int n = sizeof(arr)/sizeof(int);
cout << "Number of inversions are : " << getInvCount(arr,n);
return 0;
}
Java
// Java program to count inversions
// using Binary Indexed Tree
import java.util.*;
class GFG{
// Returns sum of arr[0..index].
// This function assumes that the
// array is preprocessed and partial
// sums of array elements are stored
// in BITree[].
static int getSum(int BITree[],
int index)
{
// Initialize result
int sum = 0;
// Traverse ancestors of
// BITree[index]
while (index > 0)
{
// Add current element of
// BITree to sum
sum += BITree[index];
// Move index to parent node
// in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index Tree
// (BITree) at given index in BITree.
// The given value 'val' is added to
// BITree[i] and all of its ancestors
// in tree.
static void updateBIT(int BITree[], int n,
int index, int val)
{
// Traverse all ancestors
// and add 'val'
while (index <= n)
{
// Add 'val' to current
// node of BI Tree
BITree[index] += val;
// Update index to that of
// parent in update View
index += index & (-index);
}
}
// Converts an array to an array
// with values from 1 to n and
// relative order of smaller and
// greater elements remains same.
// For example, {7, -90, 100, 1}
// is converted to {3, 1, 4 ,2 }
static void convert(int arr[],
int n)
{
// Create a copy of arrp[] in temp
// and sort the temp array in
// increasing order
int []temp = new int[n];
for (int i = 0; i < n; i++)
temp[i] = arr[i];
Arrays.sort(temp);
// Traverse all array elements
for (int i = 0; i < n; i++)
{
// lower_bound() Returns pointer
// to the first element greater
// than or equal to arr[i]
arr[i] =lower_bound(temp,0,
n, arr[i]) + 1;
}
}
static int lower_bound(int[] a, int low,
int high, int element)
{
while(low < high)
{
int middle = low +
(high - low) / 2;
if(element > a[middle])
low = middle + 1;
else
high = middle;
}
return low;
}
// Returns inversion count
// arr[0..n-1]
static int getInvCount(int arr[],
int n)
{
// Initialize result
int invcount = 0;
// Convert arr[] to an array
// with values from 1 to n and
// relative order of smaller
// and greater elements remains
// same. For example, {7, -90,
// 100, 1} is converted to
// {3, 1, 4 ,2 }
convert(arr, n);
// Create a BIT with size equal
// to maxElement+1 (Extra one is
// used so that elements can be
// directly be used as index)
int []BIT = new int[n + 1];
for (int i = 1; i <= n; i++)
BIT[i] = 0;
// Traverse all elements
// from right.
for (int i = n - 1; i >= 0; i--)
{
// Get count of elements
// smaller than arr[i]
invcount += getSum(BIT,
arr[i] - 1);
// Add current element to BIT
updateBIT(BIT, n, arr[i], 1);
}
return invcount;
}
// Driver code
public static void main(String[] args)
{
int arr[] = {8, 4, 2, 1};
int n = arr.length;
System.out.print("Number of inversions are : " +
getInvCount(arr, n));
}
}
// This code is contributed by Amit Katiyar
Python3
# Python3 program to count inversions using Binary Indexed Tree
from bisect import bisect_left as lower_bound
# Returns sum of arr[0..index]. This function assumes
# that the array is preprocessed and partial sums of
# array elements are stored in BITree.
def getSum(BITree, index):
sum = 0 # Initialize result
# Traverse ancestors of BITree[index]
while (index > 0):
# Add current element of BITree to sum
sum += BITree[index]
# Move index to parent node in getSum View
index -= index & (-index)
return sum
# Updates a node in Binary Index Tree (BITree) at given index
# in BITree. The given value 'val' is added to BITree[i] and
# all of its ancestors in tree.
def updateBIT(BITree, n, index, val):
# Traverse all ancestors and add 'val'
while (index <= n):
# Add 'val' to current node of BI Tree
BITree[index] += val
# Update index to that of parent in update View
index += index & (-index)
# Converts an array to an array with values from 1 to n
# and relative order of smaller and greater elements remains
# same. For example, 7, -90, 100, 1 is converted to
# 3, 1, 4 ,2
def convert(arr, n):
# Create a copy of arrp in temp and sort the temp array
# in increasing order
temp = [0]*(n)
for i in range(n):
temp[i] = arr[i]
temp = sorted(temp)
# Traverse all array elements
for i in range(n):
# lower_bound() Returns pointer to the first element
# greater than or equal to arr[i]
arr[i] = lower_bound(temp, arr[i]) + 1
# Returns inversion count arr[0..n-1]
def getInvCount(arr, n):
invcount = 0 # Initialize result
# Convert arr to an array with values from 1 to n and
# relative order of smaller and greater elements remains
# same. For example, 7, -90, 100, 1 is converted to
# 3, 1, 4 ,2
convert(arr, n)
# Create a BIT with size equal to maxElement+1 (Extra
# one is used so that elements can be directly be
# used as index)
BIT = [0] * (n + 1)
# Traverse all elements from right.
for i in range(n - 1, -1, -1):
# Get count of elements smaller than arr[i]
invcount += getSum(BIT, arr[i] - 1)
# Add current element to BIT
updateBIT(BIT, n, arr[i], 1)
return invcount
# Driver program
if __name__ == '__main__':
arr = [8, 4, 2, 1]
n = len(arr)
print("Number of inversions are : ",getInvCount(arr, n))
# This code is contributed by mohit kumar 29
C#
// C# program to count inversions
// using Binary Indexed Tree
using System;
class GFG{
// Returns sum of arr[0..index].
// This function assumes that the
// array is preprocessed and partial
// sums of array elements are stored
// in BITree[].
static int getSum(int []BITree,
int index)
{
// Initialize result
int sum = 0;
// Traverse ancestors of
// BITree[index]
while (index > 0)
{
// Add current element of
// BITree to sum
sum += BITree[index];
// Move index to parent node
// in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index Tree
// (BITree) at given index in BITree.
// The given value 'val' is added to
// BITree[i] and all of its ancestors
// in tree.
static void updateBIT(int []BITree, int n,
int index, int val)
{
// Traverse all ancestors
// and add 'val'
while (index <= n)
{
// Add 'val' to current
// node of BI Tree
BITree[index] += val;
// Update index to that of
// parent in update View
index += index & (-index);
}
}
// Converts an array to an array
// with values from 1 to n and
// relative order of smaller and
// greater elements remains same.
// For example, {7, -90, 100, 1}
// is converted to {3, 1, 4 ,2 }
static void convert(int []arr,
int n)
{
// Create a copy of arrp[] in temp
// and sort the temp array in
// increasing order
int []temp = new int[n];
for (int i = 0; i < n; i++)
temp[i] = arr[i];
Array.Sort(temp);
// Traverse all array elements
for (int i = 0; i < n; i++)
{
// lower_bound() Returns pointer
// to the first element greater
// than or equal to arr[i]
arr[i] =lower_bound(temp,0,
n, arr[i]) + 1;
}
}
static int lower_bound(int[] a, int low,
int high, int element)
{
while(low < high)
{
int middle = low +
(high - low) / 2;
if(element > a[middle])
low = middle + 1;
else
high = middle;
}
return low;
}
// Returns inversion count
// arr[0..n-1]
static int getInvCount(int []arr,
int n)
{
// Initialize result
int invcount = 0;
// Convert []arr to an array
// with values from 1 to n and
// relative order of smaller
// and greater elements remains
// same. For example, {7, -90,
// 100, 1} is converted to
// {3, 1, 4 ,2 }
convert(arr, n);
// Create a BIT with size equal
// to maxElement+1 (Extra one is
// used so that elements can be
// directly be used as index)
int []BIT = new int[n + 1];
for (int i = 1; i <= n; i++)
BIT[i] = 0;
// Traverse all elements
// from right.
for (int i = n - 1; i >= 0; i--)
{
// Get count of elements
// smaller than arr[i]
invcount += getSum(BIT,
arr[i] - 1);
// Add current element
// to BIT
updateBIT(BIT, n,
arr[i], 1);
}
return invcount;
}
// Driver code
public static void Main(String[] args)
{
int []arr = {8, 4, 2, 1};
int n = arr.Length;
Console.Write("Number of inversions are : " +
getInvCount(arr, n));
}
}
// This code is contributed by Amit Katiyar
JavaScript
<script>
// Javascript program to count inversions
// using Binary Indexed Tree
// Returns sum of arr[0..index].
// This function assumes that the
// array is preprocessed and partial
// sums of array elements are stored
// in BITree[].
function getSum(BITree,index)
{
// Initialize result
let sum = 0;
// Traverse ancestors of
// BITree[index]
while (index > 0)
{
// Add current element of
// BITree to sum
sum += BITree[index];
// Move index to parent node
// in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index Tree
// (BITree) at given index in BITree.
// The given value 'val' is added to
// BITree[i] and all of its ancestors
// in tree.
function updateBIT(BITree,n,index,val)
{
// Traverse all ancestors
// and add 'val'
while (index <= n)
{
// Add 'val' to current
// node of BI Tree
BITree[index] += val;
// Update index to that of
// parent in update View
index += index & (-index);
}
}
// Converts an array to an array
// with values from 1 to n and
// relative order of smaller and
// greater elements remains same.
// For example, {7, -90, 100, 1}
// is converted to {3, 1, 4 ,2 }
function convert(arr, n)
{
// Create a copy of arrp[] in temp
// and sort the temp array in
// increasing order
let temp = new Array(n);
for (let i = 0; i < n; i++)
temp[i] = arr[i];
temp.sort(function(a, b){return a - b;});
// Traverse all array elements
for (let i = 0; i < n; i++)
{
// lower_bound() Returns pointer
// to the first element greater
// than or equal to arr[i]
arr[i] =lower_bound(temp,0,
n, arr[i]) + 1;
}
}
function lower_bound(a,low,high,element)
{
while(low < high)
{
let middle = low +
Math.floor((high - low) / 2);
if(element > a[middle])
low = middle + 1;
else
high = middle;
}
return low;
}
// Returns inversion count
// arr[0..n-1]
function getInvCount(arr,n)
{
// Initialize result
let invcount = 0;
// Convert arr[] to an array
// with values from 1 to n and
// relative order of smaller
// and greater elements remains
// same. For example, {7, -90,
// 100, 1} is converted to
// {3, 1, 4 ,2 }
convert(arr, n);
// Create a BIT with size equal
// to maxElement+1 (Extra one is
// used so that elements can be
// directly be used as index)
let BIT = new Array(n + 1);
for (let i = 1; i <= n; i++)
BIT[i] = 0;
// Traverse all elements
// from right.
for (let i = n - 1; i >= 0; i--)
{
// Get count of elements
// smaller than arr[i]
invcount += getSum(BIT,
arr[i] - 1);
// Add current element to BIT
updateBIT(BIT, n, arr[i], 1);
}
return invcount;
}
// Driver code
let arr=[8, 4, 2, 1];
let n = arr.length;
document.write("Number of inversions are : " +
getInvCount(arr, n));
// This code is contributed by unknown2108
</script>
OutputNumber of inversions are : 6
Time Complexity: The update function and getSum function runs for O(log(n)). The getSum function has to be run for every element in the array. So overall time complexity is O(nlog(n)).
Auxiliary Space: O(n).
Space required for the BIT is an array of the size n.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem