Insert node into the middle of the linked list
Last Updated :
04 Sep, 2024
Given a linked list containing n nodes. The problem is to insert a new node with data x in the middle of the list. If n is even, then insert the new node after the (n/2)th node, else insert the new node after the (n+1)/2th node.
Examples:
Input: LinkedList = 1->2->4 , x = 3
Output: 1->2->3->4
Input: LinkedList = 10->20->40->50 , x = 30
Output: 10->20->30->40->50
Explanation: The new element is inserted after the current middle element in the linked list and Hence, the output is 10->20->30->40->50.
[Expected Approach - 1] Using Two Traversal - O(n) Time and O(1) Space:
The idea is to first find the length of linked list and then insert node with value x after the half length of the linked list.
C++
// C++ implementation to insert node at the middle
// of the linked list
#include <iostream>
using namespace std;
class Node {
public:
int data;
Node *next;
Node(int x)
{
data = x;
next = nullptr;
}
};
// Function to insert a node at the middle
// of the linked list
Node *insertInMiddle(Node *head, int x) {
// If the list is empty
if (head == nullptr) {
return new Node(x);
}
Node *newNode = new Node(x);
Node *currNode = head;
int len = 0;
// Calculate the length of the linked list
while (currNode != nullptr) {
len++;
currNode = currNode->next;
}
// Calculate the position to insert the new node
int mid;
if (len % 2 == 0) {
mid = len / 2;
}
else {
mid = (len + 1) / 2;
}
currNode = head;
// Move to the position before where
// the new node will be inserted
while (mid > 1) {
currNode = currNode->next;
mid--;
}
// Insert the new node and adjust the links
newNode->next = currNode->next;
currNode->next = newNode;
return head;
}
void printList(Node *head) {
Node* curr = head;
while (curr != nullptr) {
cout << curr->data << " ";
curr = curr->next;
}
cout << endl;
}
int main() {
// Creating the list 1->2->4->5
Node *head = new Node(1);
head->next = new Node(2);
head->next->next = new Node(4);
head->next->next->next = new Node(5);
int x = 3;
head = insertInMiddle(head, x);
printList(head);
return 0;
}
C
// C implementation to insert node at the middle
// of the linked list
#include <stdlib.h>
struct Node {
int data;
struct Node *next;
};
struct Node *createNode(int x);
// Function to insert a node at the middle
// of the linked list
struct Node *insertInMiddle(struct Node *head, int x) {
if (head == NULL) {
return createNode(x);
}
struct Node *newNode = createNode(x);
struct Node *currNode = head;
int len = 0;
// Calculate the length of the linked list
while (currNode != NULL) {
len++;
currNode = currNode->next;
}
int mid = (len % 2 == 0) ? len / 2 : (len + 1) / 2;
currNode = head;
// Move to the position before
// where the new node will be inserted
while (mid > 1) {
currNode = currNode->next;
mid--;
}
// Insert the new node and adjust the links
newNode->next = currNode->next;
currNode->next = newNode;
return head;
}
void printList(struct Node* head) {
struct Node* curr = head;
while (curr != NULL) {
printf("%d ", curr->data);
curr = curr->next;
}
printf("\n");
}
struct Node* createNode(int x) {
struct Node* newNode =
(struct Node*)malloc(sizeof(struct Node));
newNode->data = x;
newNode->next = NULL;
return newNode;
}
int main() {
// Creating the list 1->2->4->5
struct Node *head = createNode(1);
head->next = createNode(2);
head->next->next = createNode(4);
head->next->next->next = createNode(5);
int x = 3;
head = insertInMiddle(head, x);
printList(head);
return 0;
}
Java
// Java implementation to insert node
// at the middle of the linked list
class Node {
int data;
Node next;
Node(int x){
data = x;
next = null;
}
}
class GfG {
// Function to insert a node at
// the middle of the linked list
static Node insertInMiddle(Node head, int x){
if (head == null) {
return new Node(x);
}
Node newNode = new Node(x);
Node currNode = head;
int len = 0;
// Calculate the length of the linked list
while (currNode != null) {
len++;
currNode = currNode.next;
}
// Determine the middle position
int count
= (len % 2 == 0) ? (len / 2) : (len + 1) / 2;
currNode = head;
// Traverse to the middle node
while (count-- > 1) {
currNode = currNode.next;
}
// Insert the new node in the middle
newNode.next = currNode.next;
currNode.next = newNode;
return head;
}
static void printList(Node head)
{
Node curr = head;
while (curr != null) {
System.out.print(curr.data + " ");
curr = curr.next;
}
System.out.println();
}
public static void main(String[] args)
{
// Creating the list 1->2->4->5
Node head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(4);
head.next.next.next = new Node(5);
int x = 3;
head = insertInMiddle(head, x);
printList(head);
}
}
Python
# Python3 implementation to insert node
# at the middle of a linked list
class Node:
def __init__(self, data):
self.data = data
self.next = None
# Function to insert a node at the
# middle of the linked list
def insertInMiddle(head, x):
if head is None:
return Node(x)
new_node = Node(x)
curr_node = head
length = 0
# Calculate the length of the linked list
while curr_node is not None:
length += 1
curr_node = curr_node.next
mid = length // 2 if length % 2 == 0 else (length + 1) // 2
curr_node = head
# Move to the position before
# where the new node will be inserted
while mid > 1:
curr_node = curr_node.next
mid -= 1
# Insert the new node and adjust the links
new_node.next = curr_node.next
curr_node.next = new_node
return head
def print_list(head):
curr = head
while curr is not None:
print(curr.data, end=" ")
curr = curr.next
print()
if __name__ == "__main__":
# Creating the list 1->2->4->5
head = Node(1)
head.next = Node(2)
head.next.next = Node(4)
head.next.next.next = Node(5)
x = 3
head = insertInMiddle(head, x)
print_list(head)
C#
// C# implementation to insert node
// at the middle of the linked list
using System;
class Node {
public int data;
public Node next;
public Node(int x){
data = x;
next = null;
}
}
class GfG {
// Function to insert a node at the middle of the linked
// list
static Node insertInMiddle(Node head, int x)
{
if (head == null) {
return new Node(x);
}
Node newNode = new Node(x);
Node currNode = head;
int len = 0;
// Calculate the length of the linked list
while (currNode != null) {
len++;
currNode = currNode.next;
}
// Determine the middle position
int count
= (len % 2 == 0) ? (len / 2) : (len + 1) / 2;
currNode = head;
// Traverse to the middle node
while (count-- > 1) {
currNode = currNode.next;
}
// Insert the new node in the middle
newNode.next = currNode.next;
currNode.next = newNode;
return head;
}
static void printList(Node head)
{
Node curr = head;
while (curr != null) {
Console.Write(curr.data + " ");
curr = curr.next;
}
Console.WriteLine();
}
public static void Main(string[] args)
{
// Creating the list 1->2->4->5
Node head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(4);
head.next.next.next = new Node(5);
int x = 3;
head = insertInMiddle(head, x);
printList(head);
}
}
JavaScript
// Javascript implementation to insert node
// at the middle of the linked list
class Node {
constructor(data) {
this.data = data;
this.next = null;
}
}
// Function to insert a node
// at the middle of the linked list
function insertInMiddle(head, x) {
if (head === null) {
return new Node(x);
}
let newNode = new Node(x);
let currNode = head;
let length = 0;
// Calculate the length of the linked list
while (currNode !== null) {
length++;
currNode = currNode.next;
}
let mid = (length % 2 === 0) ? length / 2
: (length + 1) / 2;
currNode = head;
// Move to the position before
// where the new node will be inserted
while (mid-- > 1) {
currNode = currNode.next;
}
// Insert the new node and adjust the links
newNode.next = currNode.next;
currNode.next = newNode;
return head;
}
function printList(head) {
let curr = head;
while (curr !== null) {
process.stdout.write(curr.data + " ");
curr = curr.next;
}
console.log();
}
// Creating the list 1->2->4->5
let head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(4);
head.next.next.next = new Node(5);
let x = 3;
head = insertInMiddle(head, x);
printList(head);
Time Complexity: O(n), where n is the number of nodes in the linked list.
Auxiliary Space: O(1)
[Expected Approach - 2] Using Single Traversal - O(n) Time and O(1) Space:
The idea is based on the tortoise and hare algorithm which uses two pointers, slow_ptr and fast_ptr to traverse the list. Here, slow_ptr moves one step at a time while fast moves two steps. When fast_ptr reaches the end or NULL then slow_ptr will point to the middle of the linked list. In this specific problem, our task is to insert a new node after the middle of the list. we initialize the fast_ptr to head->next (one node ahead to slow_ptr) then when the fast reaches at end or NULL then slow_ptr pointer will points just before where the insertion should occur. Now, we can insert the new node after slow_ptr.
Below is the working of above algorithm:
Code Implementation:
C++
// C++ implementation to insert node at the middle
// of the linked list
#include <iostream>
using namespace std;
class Node {
public:
int data;
Node *next;
Node(int x) {
data = x;
next = nullptr;
}
};
// Function to insert a node
// at the middle of the linked list
Node *insertInMiddle(Node *head, int x) {
// If the list is empty
if (head == nullptr) {
return new Node(x);
}
else {
// Create a new node
Node *newNode = new Node(x);
// Assign values to the slow and fast pointers
Node *slow = head;
Node *fast = head->next;
// Move slow and fast pointers to find the middle
while (fast && fast->next) {
slow = slow->next;
fast = fast->next->next;
}
// Insert the newNode and adjust the links
newNode->next = slow->next;
slow->next = newNode;
return head;
}
}
void printList(Node *head) {
Node* curr = head;
while (curr != nullptr) {
cout << curr->data << " ";
curr = curr->next;
}
cout << endl;
}
int main() {
// Creating the list 1->2->4->5
Node *head = new Node(1);
head->next = new Node(2);
head->next->next = new Node(4);
head->next->next->next = new Node(5);
int x = 3;
head = insertInMiddle(head, x);
printList(head);
return 0;
}
C
// C implementation to insert node at the middle
// of the linked list
#include <stdlib.h>
struct Node {
int data;
struct Node *next;
};
struct Node *createNode(int x);
// Function to insert a node
// at the middle of the linked list
struct Node *insertInMiddle(struct Node *head, int x) {
// If the list is empty
if (head == NULL) {
return createNode(x);
}
else {
// Create a new node
struct Node *newNode = createNode(x);
// Assign values to the slow and fast pointers
struct Node *slow = head;
struct Node *fast = head->next;
// Move slow and fast pointers to find the middle
while (fast && fast->next) {
slow = slow->next;
fast = fast->next->next;
}
// Insert the newNode and adjust the links
newNode->next = slow->next;
slow->next = newNode;
return head;
}
}
void printList(struct Node *head) {
struct Node* curr = head;
while (curr != NULL) {
printf("%d ", curr->data);
curr = curr->next;
}
printf("\n");
}
struct Node *createNode(int x) {
struct Node *newNode =
(struct Node *)malloc(sizeof(struct Node));
newNode->data = x;
newNode->next = NULL;
return newNode;
}
int main()
{
// Creating the list 1->2->4->5
struct Node *head = createNode(1);
head->next = createNode(2);
head->next->next = createNode(4);
head->next->next->next = createNode(5);
int x = 3;
head = insertInMiddle(head, x);
printList(head);
return 0;
}
Java
// Java implementation to insert node
// at the middle of the linked list
class Node {
int data;
Node next;
Node(int x){
data = x;
next = null;
}
}
class GfG {
// Function to insert a node at the
// middle of the linked list
static Node insertInMiddle(Node head, int x)
{
// If the list is empty, create a new node as the
// head
if (head == null) {
return new Node(x);
}
else {
// Create a new node
Node newNode = new Node(x);
Node slow = head;
Node fast = head.next;
// Move slow and fast pointers to find the
// middle
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
// Insert the new node in the middle
newNode.next = slow.next;
slow.next = newNode;
return head;
}
}
static void printList(Node head)
{
Node curr = head;
while (curr != null) {
System.out.print(curr.data + " ");
curr = curr.next;
}
System.out.println();
}
public static void main(String[] args)
{
// Creating the list 1->2->4->5
Node head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(4);
head.next.next.next = new Node(5);
int x = 3;
head = insertInMiddle(head, x);
printList(head);
}
}
Python
# Python3 implementation to insert node
# at the middle of a linked list
class Node:
def __init__(self, data):
self.data = data
self.next = None
# Function to insert a node
# at the middle of the linked list
def insertInMiddle(head, x):
# If the list is empty, create
# a new node as the head
if head is None:
return Node(x)
else:
# Create a new node
new_node = Node(x)
slow = head
fast = head.next
# Move slow and fast pointers to find the middle
while fast and fast.next:
slow = slow.next
fast = fast.next.next
# Insert the new node in the middle
new_node.next = slow.next
slow.next = new_node
return head
def print_list(head):
curr = head
while curr is not None:
print(curr.data, end=" ")
curr = curr.next
print()
if __name__ == "__main__":
# Creating the list 1->2->4->5
head = Node(1)
head.next = Node(2)
head.next.next = Node(4)
head.next.next.next = Node(5)
x = 3
head = insertInMiddle(head, x)
print_list(head)
C#
// C# implementation to insert node
// at the middle of the linked list
using System;
class Node {
public int data;
public Node next;
public Node(int x){
data = x;
next = null;
}
}
class GfG {
// Function to insert a node at the middle of the linked
// list
static Node insertInMiddle(Node head, int x){
// If the list is empty, create a new node as the
// head
if (head == null) {
return new Node(x);
}
else {
// Create a new node
Node newNode = new Node(x);
Node slow = head;
Node fast = head.next;
// Move slow and fast pointers to find the
// middle
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
// Insert the new node in the middle
newNode.next = slow.next;
slow.next = newNode;
return head;
}
}
static void printList(Node head){
Node curr = head;
while (curr != null) {
Console.Write(curr.data + " ");
curr = curr.next;
}
Console.WriteLine();
}
public static void Main(string[] args){
// Creating the list 1->2->4->5
Node head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(4);
head.next.next.next = new Node(5);
int x = 3;
head = insertInMiddle(head, x);
printList(head);
}
}
JavaScript
// Javascript implementation to insert node
// at the middle of the linked list
class Node {
constructor(data) {
this.data = data;
this.next = null;
}
}
// Function to insert a node
// at the middle of the linked list
function insertInMiddle(head, x)
{
// If the list is empty, create
// a new node as the head
if (head === null) {
return new Node(x);
}
else {
// Create a new node
let newNode = new Node(x);
let slow = head;
let fast = head.next;
// Move slow and fast pointers to find the middle
while (fast !== null && fast.next !== null) {
slow = slow.next;
fast = fast.next.next;
}
// Insert the new node in the middle
newNode.next = slow.next;
slow.next = newNode;
return head;
}
}
function printList(head) {
let currNode = head;
while (currNode !== null) {
process.stdout.write(currNode.data + " ");
currNode = currNode.next;
}
console.log();
}
let head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(4);
head.next.next.next = new Node(5);
let x = 3;
head = insertInMiddle(head, x);
printList(head);
Time Complexity: O(n), where n is the number of nodes in the linked list.
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem